Low-dimensional boron: searching for Dirac materials

被引:17
|
作者
Zhou, Xiang-Feng [1 ,2 ]
Wang, Hui-Tian [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin, Peoples R China
[2] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Tianjin, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing, Jiangsu, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China
来源
ADVANCES IN PHYSICS-X | 2016年 / 1卷 / 03期
关键词
Two-dimensional boron allotrope; distorted Dirac cones; evolutionary algorithm; first-principle calculation; PREDICTION; CLUSTERS;
D O I
10.1080/23746149.2016.1209432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional (2D) boron, as an analog of graphene, can serve as a building block for fullerenes, nanotubes, and nanoribbons. Understanding its structure and stability is a prerequisite for studies of all those boron nanostructures. Based on an ab initio evolutionary structure search, novel 2D boron structures with nonzero thickness were predicted. In particular, the formation of 2D Dirac boron was reviewed. [GRAPHICS] .
引用
收藏
页码:412 / 424
页数:13
相关论文
共 50 条
  • [41] Low-Dimensional organic conductors as thermoelectric materials
    H. Yoshino
    G. C. Papavassiliou
    K. Murata
    Journal of Thermal Analysis and Calorimetry, 2008, 92 : 457 - 460
  • [42] Spin Transport and Magnetism in Low-Dimensional Materials
    Xu, Xiaohong
    Chen, Jingsheng
    Gehring, Gillian A.
    Miao, Xiangshui
    Zeng, Hao
    ADVANCES IN CONDENSED MATTER PHYSICS, 2017, 2017
  • [43] What's Next for Low-Dimensional Materials?
    Dresselhaus, M. S.
    MATERIALS RESEARCH LETTERS, 2014, 2 (01): : 1 - 9
  • [44] Tuning dimensionality in low-dimensional electronic materials
    Strouse, GF
    Scott, B
    Swanson, BI
    Saxena, A
    Batistic, I
    Gammel, JT
    Bishop, AR
    CHEMICAL PHYSICS LETTERS, 1998, 289 (5-6) : 559 - 566
  • [45] Quantum breakdown of superconductivity in low-dimensional materials
    Benjamin Sacépé
    Mikhail Feigel’man
    Teunis M. Klapwijk
    Nature Physics, 2020, 16 : 734 - 746
  • [46] Quantum breakdown of superconductivity in low-dimensional materials
    Sacepe, Benjamin
    Feigel'man, Mikhail
    Klapwijk, Teunis M.
    NATURE PHYSICS, 2020, 16 (07) : 734 - 746
  • [47] Hybridization of Biomolecular Crystals and Low-Dimensional Materials
    Rehak, Pavel
    Kral, Petr
    ACS NANO, 2021, 15 (04) : 6678 - 6683
  • [48] Nanomechanics of low-dimensional materials for functional applications
    Fan, Sufeng
    Feng, Xiaobin
    Han, Ying
    Fan, Zhengjie
    Lu, Yang
    NANOSCALE HORIZONS, 2019, 4 (04) : 781 - 788
  • [49] Graphene-analogous low-dimensional materials
    Tang, Qing
    Zhou, Zhen
    PROGRESS IN MATERIALS SCIENCE, 2013, 58 (08) : 1244 - 1315
  • [50] New directions for low-dimensional thermoelectric materials
    Dresselhaus, Mildred S.
    Chen, Gang
    Tang, Ming Y.
    Yang, Ronggui
    Lee, Hohyun
    Wang, Dezhi
    Ren, Zhifeng
    Fleurial, Jean-Pierre
    Gogna, Pawan
    ADVANCED MATERIALS, 2007, 19 (08) : 1043 - 1053