MIL-53(Fe) catalyst has been widely used to treat the pollutants in water. However, the limited number of electrons in MIL-53(Fe) catalyst has always affected the rate at which Fe3+ can be reduced to Fe2+. We modulated iron-based metal-organic frameworks (MOFs) using organic ligands modified with chlorine functional groups. The characterization results indicate that the 2Cl-MIL-53(Fe) catalyst exhibited the optimal photoelectric properties while maintaining the original structural characteristics. The experimental analyses and the first principles study suggest that the introduction of a chlorine functional group not only reduced the band gap width and enhanced the visible-light absorption capacity, but also significantly enhanced the electron cloud density of Fe-O clusters. This could further accelerate the redox cycle of Fe(III)/Fe(II), beneficial for H2O2 activation. The constructed Cl-MIL-53(Fe) catalyst exhibited a 3.8 times higher reaction rate constant than pure MIL-53(Fe) catalyst. The specific TCH degradation pathway and mechanism of 2Cl-MIL-53(Fe) treatment are proposed. This study provides a new strategy for iron-based MOFs as a heterogeneous photo-Fenton catalyst to degrade pollutants in water.