Identifying Significant Effects in Unreplicated Regular Two-level Factorial Experiments
被引:0
|
作者:
Li, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Stat, Qufu 273165, Shandong, Peoples R China
Nankai Univ, Sch Stat & Data Sci, LPMC, Tianjin 300071, Peoples R China
Nankai Univ, KLMDASR, Tianjin 300071, Peoples R ChinaQufu Normal Univ, Sch Stat, Qufu 273165, Shandong, Peoples R China
Li, Hui
[1
,2
,3
]
Zhao, Sheng-li
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Stat, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Stat, Qufu 273165, Shandong, Peoples R China
Zhao, Sheng-li
[1
]
机构:
[1] Qufu Normal Univ, Sch Stat, Qufu 273165, Shandong, Peoples R China
[2] Nankai Univ, Sch Stat & Data Sci, LPMC, Tianjin 300071, Peoples R China
[3] Nankai Univ, KLMDASR, Tianjin 300071, Peoples R China
Two-level factorial experiment;
factorial effect;
significant effect;
Monte Carlo;
D O I:
10.1007/s10255-020-0981-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The paper gives a new method to identify significant effects in two-level factorial experiments, and compares the new method with the exiting methods using Monte Carlo simulation. The existing methods only perform well under the assumption of effect sparsity, but the new method performs well without effect sparsity.
机构:
Procter & Gamble Co, Hlth Care Res Ctr, Biometr & Stat Sci Dept, Mason, OH 45040 USAProcter & Gamble Co, Hlth Care Res Ctr, Biometr & Stat Sci Dept, Mason, OH 45040 USA
Brenneman, WA
Nair, VN
论文数: 0引用数: 0
h-index: 0
机构:Procter & Gamble Co, Hlth Care Res Ctr, Biometr & Stat Sci Dept, Mason, OH 45040 USA