In situ synthesis, physical and mechanical properties of ZrB2-ZrC-WB composites

被引:7
|
作者
Guo, Shuqi [1 ]
机构
[1] Natl Inst Mat Sci, Res Ctr Struct Mat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
关键词
Zirconium compounds; Reactive hot-pressing; Microstructure; Physical and mechanical properties; ELECTRICAL-TRANSPORT PROPERTIES; ZRB2-BASED COMPOSITES; HFB2-SIC COMPOSITE; ELASTIC-MODULI; MICROSTRUCTURE; DENSIFICATION; ZIRCONIUM; STRENGTH; BEHAVIOR; HF;
D O I
10.1016/j.jeurceramsoc.2019.04.040
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, two composition ZrB2-ZrC-WB composites were synthesized by reactive hot-pressing of Zr + B4C + WC powder mixtures at 1900 degrees C. The microstructure of the resulting composites was characterized by a combination of scanning electron microscopy and X-ray diffraction. It is seen that highly-dense ZrB2-ZrC-WB composites with a homogenous fine-microstructure were obtained after the sintering. The mechanical behavior of the composites was evaluated using by testing under four-point bend testing at room and high temperatures. The results show that the high-temperature strength of the ZrB2-ZrC-WB composites was substantially improved, compared to ZrB2-ZrC-based composites without WB. In addition, the elastic properties, electrical conductivity, hardness and fracture toughness of the composites were measured at room temperature. The results reveal that these properties were comparable to those of ZrB2-ZrC-based composites without WB.
引用
收藏
页码:3283 / 3291
页数:9
相关论文
共 50 条
  • [21] Fabrication and properties of ZrC-ZrB2-SiC composites by spark plasma sintering
    Zhang, Liu
    Li, Qinggang
    Wang, Zhi
    Wu, Chao
    Cheng, Xin
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2015, 123 (1439) : 607 - 610
  • [22] Synthesis of In Situ ZrB2-SiC-ZrC Coating on ZrC-SiC Substrate by Reactive Plasma Spraying
    Ma, Bao-Xia
    Wang, Yang
    Zhao, Si-Cong
    Wu, Hao-Nan
    Qiao, Yang
    MATERIALS, 2022, 15 (06)
  • [23] Processing and mechanical properties of ZrC-ZrO2 composites
    Voltsihhin, Nikolai
    Hussainova, Irina
    Kuebarsepp, Jakob
    Traksmaa, Rainer
    ENGINEERING MATERIALS & TRIBOLOGY XXII, 2014, 604 : 258 - +
  • [24] Reactive spark plasma sintering and mechanical properties of ZrB2-SiC-ZrC composites from ZrC-B4C-Si system
    Xiang, Mingyu
    Gu, Junfeng
    Ji, Wei
    Xie, Jingjing
    Wang, Weimin
    Xiong, Yan
    Fu, Zhengyi
    CERAMICS INTERNATIONAL, 2018, 44 (07) : 8417 - 8422
  • [25] Microstructural features and mechanical properties of ZrB2-SiC-ZrC composites fabricated by hot pressing and reactive hot pressing
    Zhang, Xinghong
    Qu, Qiang
    Han, Jiecai
    Han, Wenbo
    Hong, Changqing
    SCRIPTA MATERIALIA, 2008, 59 (07) : 753 - 756
  • [26] Grain boundary driven mechanical properties of ZrB2 and ZrC-ZrB2 nanocomposite: A molecular simulation study
    Adnan, Ashfaq (aadnan@uta.edu), 1600, Blackwell Publishing Inc. (101):
  • [27] Grain boundary driven mechanical properties of ZrB2 and ZrC-ZrB2 nanocomposite: A molecular simulation study
    Kayser, Md Riaz
    Adnan, Ashfaq
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (07) : 3105 - 3117
  • [28] Study on in-situ synthesis of ZrB2 whiskers in ZrB2-ZrC matrix powder for ceramic cutting tools
    Xu, Liang
    Huang, Chuanzhen
    Liu, Hanlian
    Zou, Bin
    Zhu, Hongtao
    Zhao, Guolong
    Wang, Jun
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 37 : 98 - 105
  • [29] A Study on Mechanical Properties and Strengthening Mechanisms of AA5052/ZrB2 In Situ Composites
    Kumar, Narendra
    Gautam, Gaurav
    Gautam, Rakesh Kumar
    Mohan, Anita
    Mohan, Sunil
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2017, 139 (01):
  • [30] Microstructure and properties of in-situ ZrB2-ZrC composite coatings by plasma spraying
    Cui, Yu-hang
    Zhang, Qi
    Shao, Yu-xuan
    Yang, Yong
    Ma, Yu-duo
    Sun, Wen-wei
    Wang, Yan-wei
    Wang, Xing-yu
    Dong, Yan-chun
    SURFACE & COATINGS TECHNOLOGY, 2021, 409