Phase dynamics of entangled qubits

被引:36
|
作者
Milman, Perola [1 ]
机构
[1] Univ Paris 11, Photophys Mol Lab, CNRS, F-91405 Orsay, France
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevA.73.062118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We make a geometric study of the phases acquired by a general, pure bipartite two-level system after a cyclic unitary evolution. The geometric representation of the two particle Hilbert space makes use of Hopf fibrations. It allows for a simple description of the dynamics of the entangled state's phase during the whole evolution. The global phase after a cyclic evolution is always an entire multiple of pi for all bipartite states, a result that does not depend on the degree of entanglement. There are three different types of phases combining themselves so as to result in the n pi global phase. They can be identified as dynamical, geometrical, and topological. Each one of them can be easily identified using the presented geometric description. The interplay between them depends on the initial state and on its trajectory, and the results obtained are shown to be in connection to those on mixed state phases.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Phase-Tuned Entangled State Generation between Distant Spin Qubits
    Stockill, R.
    Stanley, M. J.
    Huthmacher, L.
    Clarke, E.
    Hugues, M.
    Miller, A. J.
    Matthiesen, C.
    Le Gall, C.
    Atature, M.
    PHYSICAL REVIEW LETTERS, 2017, 119 (01)
  • [12] Phase-Tuned Entangled State Generation Between Distant Spin Qubits
    Stockill, Robert
    Stanley, Megan
    Huthmacher, Lukas
    Le Gall, Claire
    Miller, Aaron
    Clarke, Edmund
    Hugues, Maxime
    Matthiesen, Clemens
    Atatuere, Mete
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [13] Phase analysis on the error scaling of entangled qubits in a 53-qubit system
    Huang, Wei-Jia
    Chien, Wei-Chen
    Cho, Chien-Hung
    Huang, Che-Chun
    Huang, Tsung-Wei
    Tan, Seng Ghee
    Cao, C.
    Zeng, Bei
    Chang, Ching-Ray
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [14] Generation of three-qubit entangled states using superconducting phase qubits
    Neeley, Matthew
    Bialczak, Radoslaw C.
    Lenander, M.
    Lucero, E.
    Mariantoni, Matteo
    O'Connell, A. D.
    Sank, D.
    Wang, H.
    Weides, M.
    Wenner, J.
    Yin, Y.
    Yamamoto, T.
    Cleland, A. N.
    Martinis, John M.
    NATURE, 2010, 467 (7315) : 570 - 573
  • [15] Constraints on the uncertainties of entangled symmetric qubits
    Devi, A. R. Usha
    Uma, M. S.
    PrabhU, R.
    Rajagopal, A. K.
    PHYSICS LETTERS A, 2007, 364 (3-4) : 203 - 207
  • [16] Quantum entangled state of 18 qubits
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2018, 61 (08) : 822 - 822
  • [17] Controlled source of entangled photonic qubits
    Saavedra, C.
    Gheri, K.M.
    Törmä, P.
    Cirac, J.I.
    Zoller, P.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (06): : 062311 - 062311
  • [18] Adaptive optimal control of entangled qubits
    Goodwin, David L.
    Singh, Pranav
    Foroozandeh, Mohammadali
    SCIENCE ADVANCES, 2022, 8 (49)
  • [19] Entangled qubits aren't in touch
    Kvaalen, Eric
    NEW SCIENTIST, 2016, 231 (3092) : 61 - 61
  • [20] Quantum control on entangled bipartite qubits
    Delgado, Francisco
    PHYSICAL REVIEW A, 2010, 81 (04):