On SO(N) spin vertex models

被引:3
|
作者
Belavin, Vladimir [1 ]
Gepner, Doron [2 ]
Wenzl, Hans [3 ]
机构
[1] Ariel Univ, Phys Dept, IL-40700 Ariel, Israel
[2] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.nuclphysb.2020.115160
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe the Boltzmann weights of the D-k algebra spin vertex models. Thus, we find the SO (N) spin vertex models, for any N, completing the B-k case found earlier. We further check that the real (self-dual) SO(N) models obey quantum algebras, which are the Birman-Murakami-Wenzl (BMW) algebra for three blocks, and certain generalizations, which include the BMW algebra as a sub-algebra, for four and five blocks. In the case of five blocks, the B-4 model is shown to satisfy additional twenty new relations, which are given. The D-6 model is shown to obey two additional relations. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Emergent SU(N) symmetry in disordered SO(N) spin chains
    Victor L. Quito
    Pedro L. S. Lopes
    José A. Hoyos
    Eduardo Miranda
    The European Physical Journal B, 2020, 93
  • [32] Emergent SU(N) symmetry in disordered SO(N) spin chains
    Quito, Victor L.
    Lopes, Pedro L. S.
    Hoyos, Jose A.
    Miranda, Eduardo
    EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (01):
  • [33] Asymptotic freedom in certain SO(N) and SU(N) models
    Einhorn, Martin B.
    Jones, D. R. Timothy
    PHYSICAL REVIEW D, 2017, 96 (05)
  • [34] Duality, phases, spinors and monopoles in SO(N) and Spin(N) gauge theories
    Strassler, MJ
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (09):
  • [35] THE N = 0 REPLICA LIMIT OF U(N) AND U(N) /SO(N) MODELS
    GADE, R
    WEGNER, F
    NUCLEAR PHYSICS B, 1991, 360 (2-3) : 213 - 218
  • [36] Integrable SU(N) vertex models with general toroidal boundary conditions
    Ribeiro, GAP
    Martins, MJ
    Galleas, W
    NUCLEAR PHYSICS B, 2003, 675 (03) : 567 - 583
  • [37] String bits and the spin vertex
    Jiang, Yunfeng
    Kostov, Ivan
    Petrovskii, Andrei
    Serban, Didina
    NUCLEAR PHYSICS B, 2015, 897 : 374 - 404
  • [38] Q-operators for higher spin eight vertex models with a rational anisotropy parameter
    Takashi Takebe
    Letters in Mathematical Physics, 2019, 109 : 1867 - 1890
  • [39] Stochastic Higher Spin Vertex Models on the Line (vol 343, pg 651, 2016)
    Corwin, Ivan
    Petrov, Leonid
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 353 - 355
  • [40] Q-Operators for Higher Spin Eight Vertex Models with an Even Number of Sites
    Takashi Takebe
    Letters in Mathematical Physics, 2016, 106 : 319 - 340