Vibration Control of a Smart Shell Reinforced by Graphene Nanoplatelets

被引:93
|
作者
Al-Furjan, M. S. H. [1 ,2 ]
Habibi, Mostafa [3 ,4 ]
Safarpour, Hamed [5 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[3] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[4] Duy Tan Univ, Fac Elect Elect Engn, Da Nang 550000, Vietnam
[5] Imam Khomeini Int Univ, Dept Mech, Qazvin, Iran
基金
中国国家自然科学基金;
关键词
Sensor and actuator; viscoelastic foundation; PD controller; frequency characteristics; time domain; LAMINATED CYLINDRICAL PANELS; ELASTIC FOUNDATIONS; NONLINEAR VIBRATION; BEHAVIOR; ENERGY; MODEL;
D O I
10.1142/S1758825120500660
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Smart control and dynamic investigation of a graphene nanoplatelets reinforced composite (GPLRC) cylindrical shell surrounded by a piezoelectric layer as actuator and sensor based on a numerical solution method called generalized differential quadrature method (GDQM) are presented for the first time. The strains and stresses can be determined via the first-order shear deformable theory (FSDT). For accessing to various mass densities, thermal expansion as well as Poisson ratio, the rule of mixture is applied, although a modified Halpin-Tsai theory is used for obtaining the module of elasticity. The external voltage is applied to the sensor layer, while a proportional-derivative (PD) controller has been utilized for controlling the output of sensor. GPLRCs boundary conditions are derived through governing equations of the cylindrical shell using an energy method known as Hamilton's principle. The outcomes show that the PD controller, viscoelastic foundation, slenderness factor (L/R), external voltage and graphene nanoplatelets (GPLs) weight fraction have a considerable impact on the amplitude, and vibration behavior of a GPLRC cylindrical shell. As an applicable result in related industries, the parameter and consideration of the PD controller have a positive effect on the static and dynamic behaviors of the structure.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] The Potential of Graphene Nanoplatelets in the Development of Smart and Multifunctional Ecocomposites
    Pereira, Pedro
    Ferreira, Diana P.
    Araujo, Joana C.
    Ferreira, Armando
    Fangueiro, Raul
    POLYMERS, 2020, 12 (10)
  • [42] Characterization of graphene nanoplatelets reinforced sustainable thermoplastic elastomers
    Kiziltas, Alper
    Tamrakar, Sandeep
    Rizzo, John
    Mielewski, Debbie
    COMPOSITES PART C: OPEN ACCESS, 2021, 6
  • [43] Preparation and properties of graphene nanoplatelets reinforced aluminum composites
    Zheng, Zhong
    Yang, Xiao-xia
    Li, Jian-chao
    Zhang, Xue-xi
    Muhammad, Imran
    Geng, Lin
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2021, 31 (04) : 878 - 886
  • [44] In situ processing of epoxy composites reinforced with graphene nanoplatelets
    Prolongo, S. G.
    Jimenez-Suarez, A.
    Moriche, R.
    Urena, A.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 86 : 185 - 191
  • [45] Modeling the thermal conductivity of graphene nanoplatelets reinforced composites
    Chu, Ke
    Li, Wen-sheng
    Dong, Hong-feng
    Tang, Fu-ling
    EPL, 2012, 100 (03)
  • [46] Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets
    Wang, Aiwen
    Chen, Hongyan
    Hao, Yuxin
    Zhang, Wei
    RESULTS IN PHYSICS, 2018, 9 : 550 - 559
  • [47] Vibration characteristics of functionally graded graphene reinforced porous composite stepped cylindrical shell
    Xu H.
    Wang Y.
    Xu Z.
    Jia X.
    Yu X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (07): : 317 - 326
  • [48] Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets
    Qureshi, Tanvir S.
    Panesar, Daman K.
    COMPOSITES PART B-ENGINEERING, 2020, 197
  • [49] Graphene Nanoplatelets-Based Smart Textile for Kinesthetic Monitoring
    Rinaldi, A.
    Tamburrano, A.
    Sarto, M. S.
    2017 IEEE SENSORS, 2017, : 1194 - 1196
  • [50] Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets
    Bei-Ying Zhou
    Sheng-Jie Fan
    Yu-Chi Fan
    Qi Zheng
    Xin Zhang
    Wan Jiang
    Lian-Jun Wang
    Rare Metals, 2020, 39 (05) : 513 - 528