The MOF/LDH derived heterostructured Co3O4/MnCo2O4 composite for enhanced degradation of levofloxacin by peroxymonosulfate activation

被引:36
|
作者
Deng, Qingchen [1 ]
Zhang, Xiaodan [2 ]
Chang, Lian [1 ]
Chai, Hongxiang [1 ]
Huang, Yuming [2 ]
机构
[1] Chongqing Univ, Coll Environm & Ecol, Key Lab Eco environm Three Gorges Reservoir Reg, Minist Educ, Chongqing 400045, Peoples R China
[2] Southwest Univ, Coll Chem & Chem Engn, Key Lab Eco environm Three Gorges Reservoir Reg, Minist Educ, Chongqing 400715, Peoples R China
关键词
MOF/LDH precursor; Peroxymonosulfate activation; Heterostructured Co3O4/MnCo2O4 composite; Levofloxacin degradation; Synergism; EFFICIENT DEGRADATION; SULFATE RADICALS; FLUOROQUINOLONE ANTIBIOTICS; HETEROGENEOUS ACTIVATION; BISPHENOL-A; OXIDATION; PERSULFATE; SPINEL; CHLORAMPHENICOL; CATALYST;
D O I
10.1016/j.seppur.2022.121182
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, metal-organic framework interfacing layered double hydroxide (MOF/LDH) derived heterostructured Co3O4/MnCo2O4 composite was synthesized and employed to activate peroxymonosulfate (PMS) for levofloxacin (LEV) degradation. With a greater pseudo-first-order reaction rate constant than those previously reported, approximately 96.9% of LEV (10 mg/L) could be decomposed within 30 min by the Co3O4/MnCo2O4/ PMS catalytic system, which exhibited superior performance over single Co3O4 and MnCo2O4 catalyst. The influences of critical reaction parameters on LEV removal were evaluated and the experimental results indicated that Co3O4/MnCo2O4 possessed broad adaptability to solution pH, as well as appreciable practicality, universality and stability. By exposing more active sites through higher specific surface area and enhancing the electron transfer rate with heterostructure, the Co3O4/MnCo2O4 catalyst remarkably promoted the generation of reactive oxygen species (ROS) including SO4 center dot-, center dot OH, O-2 center dot- and O-1(2), which were further verified by scavenger tests and electron paramagnetic resonance (EPR) technique. The transformation routes of LEV were elucidated according to the identified degradation intermediates. Finally, the underlying reaction mechanism was revealed on the basis of the results of characterizations and experiments. This work not only provided a novel strategy to improve the catalytic ability of conventional active components for PMS activation, but also brought new insights into the huge potential of mixed transition metal oxides, which would motivate future development of catalysts fabrication with advantageous microstructures and favorable properties for water pollution remediation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Activation of peroxymonosulfate by Co2SnO4/Co3O4/SnO2 material for the effective degradation of diclofenac
    Soumia Fergani
    Hanane Zazoua
    Adel Saadi
    Souad Touati
    Amel Boudjemaa
    Khaldoun Bachari
    Reaction Kinetics, Mechanisms and Catalysis, 2023, 136 : 1033 - 1048
  • [22] Construction of Z-scheme MnCo2O4/Sn3O4 heterostructured photoanodes with enhanced photoelectrocatalytic degradation of reactive brilliant blue KN-R
    Lu, Xiaohui
    Cao, Jiahuan
    Wang, Pengyuan
    Zhang, Xinxin
    Wang, Guowen
    Sun, Dedong
    Ma, Hongchao
    Fu, Yinghuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (04):
  • [23] Activation of peroxymonosulfate by a waste red mud-supported Co3O4 quantum dots under visible light for the degradation of levofloxacin
    Li, Qingyong
    Wei, Guangtao
    Zhang, Linye
    Li, Zhongmin
    Li, Jiahui
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [24] Plant-Cell mediated synthesis of MnCo2O4 nanoparticles and their activation of peroxymonosulfate to remove Tetracycline
    Ji, Jialu
    Zhang, Qi
    Mo, Hesu
    Ren, Zhongfei
    Lin, Yan
    Chen, Zhigang
    Leiviska, Tiina
    Wu, Zhengying
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [25] Enhanced Catalytic Degradation of Acid Orange 7 Dye by Peroxymonosulfate on Co3O4 Promoted by Bi2O3
    Ivanova-Kolcheva, Vanina
    Sygellou, Labrini
    Stoyanova, Maria
    ACTA CHIMICA SLOVENICA, 2020, 67 (02) : 609 - 621
  • [26] Fe3O4@Co3S4 Nanocatalyst: Enhanced Activation of Peroxymonosulfate For Acetaminophen Degradation
    Guan, Xiaotong
    Jiang, Yu
    Meng, Liang
    NANO, 2024, 19 (07)
  • [27] Emerging Phosphate-Functionalized Co3O4/Kaolinite Composites for Enhanced Activation of Peroxymonosulfate
    Zhao, Qihang
    Gao, Chao
    Hou, Lirong
    Yang, Huaming
    INORGANIC CHEMISTRY, 2023, 62 (12) : 4823 - 4834
  • [28] Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light
    Ni, Tianjun
    Yang, Zhibin
    Zhang, Hui
    Zhou, Liping
    Guo, Wei
    Pan, Likun
    Yang, Zhijun
    Chang, Kaiwen
    Ge, Chunpo
    Liu, Dong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 650 - 662
  • [29] Enhanced degradation of 4-Cholophenol by activation of peroxymonosulfate with Fe-MOF@Mn2O3: Performance and mechanism
    Xue, Yuwei
    Liu, Lihua
    Zhang, Ting
    Zhu, Ziqi
    Xu, Mingjun
    Zhang, Qian
    Hong, Junming
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (05):
  • [30] In-situ growth of Mn2O3/MnCo2O4 on 3D nickel foam as a novel heterogeneous composites peroxymonosulfate activator for the degradation of levofloxacin: Performance, stability and mechanism
    Song, Lixian
    Cheng, Xiuwen
    Yang, Ying
    Hou, Yilong
    Gan, Xinrui
    Wang, Ce
    Shang, Jiangwei
    CHEMICAL ENGINEERING JOURNAL, 2023, 471