The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca2+ Entry

被引:17
|
作者
Malli, Roland [1 ]
Graier, Wolfgang F. [1 ]
机构
[1] Med Univ Graz, Inst Mol Biol & Biochem, Neue Stiftingtalstr 6-6, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Mitochondria; Endothelial nitric oxide synthase; Ca2+ signaling; Store-operated Ca2+ entry; Mitochondrial Ca2+ uptake; Uncoupling protein 2; MICU1; MCU; Protein methylation; ACTIVATED CALCIUM CURRENT; ENDOPLASMIC-RETICULUM; ESSENTIAL COMPONENT; DEPENDENT INACTIVATION; CA++ UPTAKE; UNIPORTER; STIM1; MICU1; MCU; PROTEINS;
D O I
10.1007/978-3-319-57732-6_16
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In most cell types, the depletion of internal Ca2+ stores triggers the activation of Ca2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca2+-permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca2+ at sites of Ca2+ release and entry was initially supposed to rule SOCE by facilitating the Ca2+ depletion of the endoplasmic reticulum and removing entering Ca2+ from the Ca2+-inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.
引用
收藏
页码:297 / 319
页数:23
相关论文
共 50 条
  • [21] Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration
    Tang, Shihao
    Wang, Xubu
    Shen, Qiang
    Yang, Xinyi
    Yu, Changhui
    Cai, Chunqing
    Cai, Guoshuai
    Meng, Xiaojing
    Zou, Fei
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 458 (01) : 186 - 193
  • [22] Contribution and Regulation of TRPC Channels in Store-Operated Ca2+ Entry
    Cheng, Kwong Tai
    Ong, Hwei Ling
    Liu, Xibao
    Ambudkar, Indu S.
    STORE-OPERATED CALCIUM CHANNELS, 2013, 71 : 149 - 179
  • [23] Capsaicin stimulates the non-store-operated Ca2+ entry but inhibits the store-operated Ca2+ entry in neutrophils
    Wang, JP
    Tseng, CS
    Sun, SP
    Chen, YS
    Tsai, CR
    Hsu, MF
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2005, 209 (02) : 134 - 144
  • [24] Expanding the store-operated Ca2+ entry microdomain through Ca2+ tunneling
    Courjaret, Raphael J.
    Machaca, Khaled
    CURRENT OPINION IN PHYSIOLOGY, 2020, 17 : 158 - 162
  • [25] Store-operated Ca2+ entry:: a STIMulating stOrai
    Taylor, Colin W.
    TRENDS IN BIOCHEMICAL SCIENCES, 2006, 31 (11) : 597 - 601
  • [26] Regulation of Store-Operated Ca2+ Entry by Septins
    Deb, Bipan K.
    Hasan, Gaiti
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2016, 4
  • [27] Redox Regulation of Store-Operated Ca2+ Entry
    Nunes, Paula
    Demaurex, Nicolas
    ANTIOXIDANTS & REDOX SIGNALING, 2014, 21 (06) : 915 - 932
  • [28] Lifting the fog in store-operated Ca2+ entry
    Dráber, P
    Dráberová, L
    TRENDS IN IMMUNOLOGY, 2005, 26 (12) : 621 - 624
  • [29] Historical Overview of Store-Operated Ca2+ Entry
    Albarran, Letizia
    Lopez, Jose J.
    Salido, Gines M.
    Rosado, Juan A.
    CALCIUM ENTRY PATHWAYS IN NON-EXCITABLE CELLS, 2016, 898 : 3 - 24
  • [30] Modeling the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations
    Kowalewski, Jacob M.
    Uhlen, Per
    Kitano, Hiroaki
    Brismar, Hjalmar
    MATHEMATICAL BIOSCIENCES, 2006, 204 (02) : 232 - 249