Biquadratic tensors, biquadratic decompositions, and norms of biquadratic tensors

被引:1
|
作者
Qi, Liqun [1 ,2 ,3 ]
Hu, Shenglong [2 ]
Zhang, Xinzhen [4 ]
Xu, Yanwei [1 ]
机构
[1] Huawei Theory Res Lab, Hong Kong, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
[4] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
基金
中国国家自然科学基金;
关键词
Biquadratic tensor; nuclear norm; tensor product; biquadratic rank-one decomposition; biquadratic Tucker decomposition; ELLIPTICITY;
D O I
10.1007/s11464-021-0895-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Biquadratic tensors play a central role in many areas of science. Examples include elastic tensor and Eshelby tensor in solid mechanics, and Riemannian curvature tensor in relativity theory. The singular values and spectral norm of a general third order tensor are the square roots of the M-eigenvalues and spectral norm of a biquadratic tensor, respectively. The tensor product operation is closed for biquadratic tensors. All of these motivate us to study biquadratic tensors, biquadratic decomposition, and norms of biquadratic tensors. We show that the spectral norm and nuclear norm for a biquadratic tensor may be computed by using its biquadratic structure. Then, either the number of variables is reduced, or the feasible region can be reduced. We show constructively that for a biquadratic tensor, a biquadratic rank-one decomposition always exists, and show that the biquadratic rank of a biquadratic tensor is preserved under an independent biquadratic Tucker decomposition. We present a lower bound and an upper bound of the nuclear norm of a biquadratic tensor. Finally, we define invertible biquadratic tensors, and present a lower bound for the product of the nuclear norms of an invertible biquadratic tensor and its inverse, and a lower bound for the product of the nuclear norm of an invertible biquadratic tensor, and the spectral norm of its inverse.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 50 条
  • [41] BIQUADRATIC EXCHANGE INTERACTIONS IN DYSB
    KOUVEL, JS
    BRUN, TO
    KORTY, FW
    PHYSICA B & C, 1977, 86 (JAN-M): : 1043 - 1045
  • [42] Involution on the trinodal biquadratic curve
    de Vries, J
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1932, 35 (6/10): : 1119 - 1121
  • [43] A RATIONAL BIQUADRATIC RECIPROCITY LAW
    BURDE, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 235 : 175 - &
  • [44] ON THE BIQUADRATIC THETA-SERIES
    SUZUKI, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 438 : 31 - 85
  • [45] GALOIS COHOMOLOGY OF BIQUADRATIC EXTENSIONS
    MERKURJEV, AS
    TIGNOL, JP
    COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (01) : 138 - 169
  • [46] BIQUADRATIC EXCHANGE AND QUADRUPOLAR ORDERING
    BLUME, M
    HSIEH, YY
    JOURNAL OF APPLIED PHYSICS, 1969, 40 (03) : 1249 - &
  • [47] Modeling with rational biquadratic splines
    Karciauskas, Kestutis
    Peters, Joerg
    COMPUTER-AIDED DESIGN, 2011, 43 (11) : 1350 - 1359
  • [48] ISING FERROMAGNET WITH BIQUADRATIC EXCHANGE
    CHADDHA, G
    PHYSICS LETTERS A, 1976, 58 (05) : 332 - 334
  • [49] Biquadratic extensions with one break
    Byott, NP
    Elder, GG
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (02): : 168 - 179
  • [50] The adaptive biquadratic neural network
    Dominguez, DRC
    Korutcheva, E
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIII, PROCEEDINGS: SYSTEMICS, CYBERNETICS AND INFORMATICS: TECHNOLOGIES AND APPLICATIONS, 2003, : 183 - 186