Optimal singular value shrinkage for operator norm loss: Extending to non-square matrices

被引:3
|
作者
Leeb, William [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Singular value shrinkage; Operator norm loss; Schatten loss; Linear prediction; Best linear predictor;
D O I
10.1016/j.spl.2022.109472
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We correct a formula of Gavish and Donoho for singular value shrinkage with operator norm loss for non-square matrices. We also observe that in the classical regime, optimal shrinkage for any Schatten loss converges to the best linear predictor. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] GENERALIZATION OF SOME DETERMINANTAL IDENTITIES FOR NON-SQUARE MATRICES BASED ON RADIC'S DEFINITION
    Amiri, A.
    Fathy, M.
    Bayat, M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (02): : 163 - 175
  • [32] Variable Trial Length AILC for Nonlinear Systems with Non-square Control Gain Matrices
    Yin, Mali
    Li, Xuefang
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1767 - 1772
  • [33] Computational algorithms for computing the inverse of a square matrix, quasi-inverse of a non-square matrix and block matrices
    Najafi, H. Saberl
    Solary, M. Shams
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (01) : 539 - 550
  • [34] Elimination of Direction of Arrival Estimation Ambiguities through the Use of Non-Square Coupling Matrices
    Henault, S.
    Antar, Y. M. M.
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 317 - 320
  • [35] Solution of Algebraic Riccati Equation for Optimal Control Using Non-Square Estimator
    Queiroz, Jonathan Araujo
    Neto, Joao Viana da F.
    Barros, Allan Kardec
    2015 IEEE 24TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2015, : 125 - 130
  • [36] On the operator norm of non-commutative polynomials in deterministic matrices and iid GUE matrices
    Collins, Benoit
    Guionnet, Alice
    Parraud, Felix
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (01) : 195 - 260
  • [37] Singular Value and Matrix Norm Inequalities between Positive Semidefinite Matrices and Their Blocks
    Zhang, Feng
    Ma, Rong
    Zhang, Chunwen
    Cao, Yuxin
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [38] WEIGHTED NORM INEQUALITIES FOR TOEPLITZ TYPE OPERATOR ASSOCIATED TO SINGULAR IN OPERATOR WITH NON SMOOTH KERNEL
    Hu, Yue
    Wang, Yueshan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 659 - 673
  • [39] On the operator norm of non-commutative polynomials in deterministic matrices and iid Haar unitary matrices
    Parraud, Felix
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 182 (3-4) : 751 - 806
  • [40] On the operator norm of non-commutative polynomials in deterministic matrices and iid Haar unitary matrices
    Félix Parraud
    Probability Theory and Related Fields, 2022, 182 : 751 - 806