Dynamic dissipativity theory for stability of nonlinear feedback dynamical systems

被引:0
|
作者
Chellaboina, VijaySekhar [1 ]
Haddad, Wassim M. [1 ]
Kamath, Ajeet [1 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key result from dissipativity theory states that if two systems are dissipative with respect to compatible supply rates, then the feedback interconnection of the two systems is stable. In this paper, we extend this result to show that the stability result is valid even if the two systems are dynamic dissipative, where we define a system to be dynamic dissipative if the system cascaded with another (static or dynamic) operator is dissipative. The notion of dynamic dissipativity unifies and extends the classical dissipativity theory, Integral Quadratic Constraints (IQCs), and the multiplier theory method from the absolute stability theory.
引用
收藏
页码:4748 / 4753
页数:6
相关论文
共 50 条
  • [21] On partial stability theory of nonlinear dynamic systems
    Vorotnikov, V. I.
    Martyshenko, Yu. G.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2010, 49 (05) : 702 - 709
  • [22] Feedback stability analysis via dissipativity with dynamic supply rates
    Khong, Sei Zhen
    Chen, Chao
    Lanzon, Alexander
    Automatica, 2025, 172
  • [23] Absolute stability of an interval family of nonlinear dynamic systems with nonlinear feedback
    R. S. Ivlev
    Journal of Computer and Systems Sciences International, 2006, 45 : 212 - 216
  • [24] Absolute stability of an interval family of nonlinear dynamic systems with nonlinear feedback
    Ivlev, R. S.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2006, 45 (02) : 212 - 216
  • [25] Quasi-stability regions of nonlinear dynamical systems: Theory
    Chiang, HD
    FekihAhmed, L
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (08): : 627 - 635
  • [26] Dissipativity theory for nonnegative and compartmental dynamical systems with time delay
    Haddad, WA
    Chellaboina, VS
    Rajpurohit, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 747 - 751
  • [27] Dissipativity theory for nonnegative and compartmental dynamical systems with time delay
    Haddad, WM
    Chellaboina, V
    Rajpurohit, T
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 857 - 862
  • [28] Feedback characteristics of nonlinear dynamical systems
    Lahellec, A.
    Hallegatte, S.
    Grandpeix, J. -Y.
    Dumas, P.
    Blanco, S.
    EPL, 2008, 81 (06)
  • [29] Stability of extremum seeking feedback for general nonlinear dynamic systems
    Krstic, M
    Wang, HH
    AUTOMATICA, 2000, 36 (04) : 595 - 601
  • [30] On the Equivalence Between Dissipativity and Optimality of Nonlinear Controllers for Discontinuous Dynamical Systems
    Sadikhov, Teymur
    Haddad, Wassim M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 5526 - 5531