NTM-Lung Disease: Machine Learning identifies undiagnosed Patients

被引:0
|
作者
Manych, Matthias
机构
来源
PNEUMOLOGIE | 2020年 / 74卷 / 12期
关键词
D O I
10.1055/a-1210-5352
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Die nichttuberkulose mykobakterielle (NTM) Lungenerkrankung ist insgesamt selten, ihre Inzidenz und Pravalenz nehmen aber zu. Aktuell wird die jahrliche Pravalenz in Europa auf 3,3-6 Falle pro 100000 geschatzt. Die Identifizierung von Patienten mit NTM-Lungenerkrankung konnte durch die Anwendung kunstlicher Intelligenz (KI) verbessert werden, wie eine Studie fur das United Kingdom belegt.
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Improving Care for Patients with Interstitial Lung Disease Using Machine Learning Requires Transparency and Reproducibility
    Weissman, Gary E.
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2017, 14 (12) : 1863 - +
  • [42] Radiological features of NTM pulmonary disease in patients with bronchiectasis
    Chalmers, James D.
    Finch, Simon
    Laska, Irena
    Ferri, Sebastian
    Carreto, Luis
    Redondo, Margarida
    Abo-Leyah, Hani
    Van der Laan, Roald
    EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [43] Association Between Phenotypic Characteristics and SGRQ Score in NTM Lung Disease
    Grady, A.
    Darrow, A.
    Christon, L.
    Flume, P. A.
    Dorman, S.
    Garcia, B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [44] Cases series on nontuberculous mycobacterial (NTM) lung disease and silicosis in Brazil
    Rangel, Diana Arrais de Souza
    Garcia, Marcos Vinicius Fernandes
    Mizutani, Rafael Futoshi
    Sales, Roberta Karla Barbosa
    Santos, Ubiratan de Paula
    Terra-Filho, Mario
    EUROPEAN RESPIRATORY JOURNAL, 2017, 50
  • [45] MACHINE LEARNING FOR IDENTIFYING POTENTIALLY UNDIAGNOSED POST-STROKE SPASTICITY PATIENTS IN UNITED KINGDOM
    Cox, A.
    Raluy-Callado, M.
    Wang, M.
    Bakheit, A.
    Moor, A. P.
    Dinet, J.
    VALUE IN HEALTH, 2015, 18 (07) : A685 - A686
  • [46] Utilization of artificial intelligence to identify undiagnosed Fabry patients: Development of a validated machine learning model
    Jefferies, John L.
    Spencer, Alison K.
    Warnock, David G.
    La, Heather A.
    Nelson, Matthew W.
    Giuliano, Joseph D.
    Zabinski, Joseph W.
    Boussios, Costas
    Curhan, Gary
    Bandaria, Jigar N.
    Gliklich, Richard E.
    MOLECULAR GENETICS AND METABOLISM, 2021, 132 (02) : S52 - S52
  • [47] The Impact of Time Censoring on Machine Learning Models Which Identify Patients With Undiagnosed Cardiac Amyloidosis
    Lee, Greg
    Fielden, Sam
    Carry, Brendan
    Cerna, Alvaro Ulloa
    Jing, Linyuan
    Nemani, Arun
    Rocha, Daniel
    Flick, Kyle
    Ruhl, Jeffrey
    Venkataraman, Jagadish
    Zimmerman, Noah
    Chen, Ruijun
    Fornwalt, Brandon
    Haggerty, Christopher M.
    CIRCULATION, 2022, 146
  • [48] rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography
    Ulloa-Cerna, Alvaro E.
    Jing, Linyuan
    Pfeifer, John M.
    Raghunath, Sushravya
    Ruhl, Jeffrey A.
    Rocha, Daniel B.
    Leader, Joseph B.
    Zimmerman, Noah
    Lee, Greg
    Steinhubl, Steven R.
    Good, Christopher W.
    Haggerty, Christopher M.
    Fornwalt, Brandon K.
    Chen, Ruijun
    CIRCULATION, 2022, 146 (01) : 36 - 47
  • [49] Machine Learning discovery of lung disease trajectories in premature infants
    Ofman, Gaston
    Caballero, Mauricio
    Haiden, Sadia
    Nowogrodski, Florencia
    Hamvas, Aaron
    Tipple, Trent
    Kleeberger, Steven
    Alvarez-Paggi, Damian
    Polack, Fernando
    FASEB JOURNAL, 2021, 35
  • [50] An Ensemble Machine Learning Model Using Gradient Boosting Identifies Patients with Disease Progression in Newly Diagnosed Multiple Myeloma
    Williams, Louis S.
    Khosravi, Bardia
    Velimirovic, Marko
    Khouri, Jack
    Raza, Shahzad
    Mazzoni, Sandra
    Samaras, Christy J.
    Awada, Hussein
    Dima, Danai
    Valent, Jason
    Anwer, Faiz
    BLOOD, 2023, 142