DISTRIBUTION OF DISTANCES IN POSITIVE CHARACTERISTIC

被引:3
|
作者
Thang Pham [1 ]
Le Anh Vinh [2 ]
机构
[1] ETH, Dept Math, Zurich, Switzerland
[2] Vietnam Inst Educ Sci, Hanoi, Vietnam
基金
瑞士国家科学基金会;
关键词
distances; finite fields; incidence; Rudnev's point-plane incidence bound; SUM-PRODUCT ESTIMATE; ADDITIVE PROPERTIES; FINITE-FIELDS; SETS;
D O I
10.2140/pjm.2020.309.437
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be an arbitrary finite field, and epsilon be a point set in F-q(d). Let Delta(epsilon) be the set of distances determined by pairs of points in E. Using Kloosterman sums, Iosevich and Rudnev (2007) proved that if vertical bar epsilon vertical bar >= 4q((d + 1)/2) then Delta(epsilon) = F-q. In general, this result is sharp in odd-dimensional spaces over arbitrary finite fields. We use the point-plane incidence bound due to Rudnev to prove that if epsilon has Cartesian product structure in vector spaces over prime fields, then we can break the exponent (d + 1)/2 and still cover all distances. We also show that the number of pairs of points in epsilon of any given distance is close to its expected value.
引用
收藏
页码:437 / 451
页数:15
相关论文
共 50 条