Global stability of strong rarefaction waves for the generalized KdV-Burgers equation

被引:19
|
作者
Duan, Ran
Zhao, Huijiang [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
KdV-Burgers equation; strong rarefaction waves; global stability; continuity argument;
D O I
10.1016/j.na.2006.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the global stability of strong rarefaction waves for the generalized KdV-Burgers equation. In contrast to former results obtained by Z.A. Wang and C.J. Zhu [Stability of the rarefaction wave for the generalized KdV-Burgers equation, Acta Math. Sci. 22B (3) (2002) 319-328], ours do not require the strength of the rarefaction waves to be small and the initial disturbance can also be chosen large. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1100 / 1117
页数:18
相关论文
共 50 条
  • [41] Asymptotic Stability of Monotone Decreasing Kink Profile Solitary Wave Solutions for Generalized KdV-Burgers Equation
    Wei-guo ZHANG
    Wen-xia LI
    Sheng-er DENG
    Xiang LI
    Acta Mathematicae Applicatae Sinica, 2019, 35 (03) : 475 - 490
  • [42] Analytical description of the structure of special discontinuities described by a generalized KdV-Burgers equation
    Chugainova, A. P.
    Shargatov, V. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 66 : 129 - 146
  • [43] Asymptotic Stability of Monotone Decreasing Kink Profile Solitary Wave Solutions for Generalized KdV-Burgers Equation
    Zhang, Wei-guo
    Li, Wen-xia
    Deng, Sheng-er
    Li, Xiang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (03): : 475 - 490
  • [44] A travelling wave solution to the KdV-Burgers equation
    Demiray, H
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) : 665 - 670
  • [45] Space Time Method for Solving KdV and KdV-Burgers' Equation
    Cao, Yanhua
    Wu, Xiaoran
    Jia, Zhile
    MECHANICS OF SOLIDS, 2024, 59 (01) : 268 - 279
  • [46] Computable analysis of a boundary-value problem for the generalized KdV-Burgers equation
    Lu, Dianchen
    Chen, Chenxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) : 2243 - 2249
  • [47] A non-local KdV-Burgers equation: Numerical study of travelling waves
    Cuesta, Carlota M.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2015, 6 (02):
  • [48] The solitary wave solutions to KdV-Burgers equation
    Lü, KP
    Shi, YR
    Duan, WS
    Zhao, JB
    ACTA PHYSICA SINICA, 2001, 50 (11) : 2074 - 2076
  • [49] Solitary wave solutions to KdV-Burgers equation
    Lu, K.P.
    Shi, Y.R.
    Duan, W.S.
    Zhao, J.B.
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (11):
  • [50] Existence of travelling wavefronts of the KdV-Burgers equation
    Fu, Yanggeng
    Liu, Zhengrong
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 897 - 900