Est modus in rebus: analytical properties of multi-model ensembles

被引:52
|
作者
Potempski, S. [1 ,2 ]
Galmarini, S. [1 ]
机构
[1] Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, I-21020 Ispra, VA, Italy
[2] Inst Atom Energy, PL-05400 Otwock, Poland
关键词
SENSITIVITY-ANALYSIS; SUPERENSEMBLE FORECASTS; MODEL; PREDICTION; WEATHER; SKILL;
D O I
10.5194/acp-9-9471-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper we investigate some basic properties of the multi-model ensemble systems, which can be deduced from a general characteristic of statistical distributions of the ensemble members with the help of mathematical tools. In particular we show how to find optimal linear combination of model results, which minimizes the mean square error both in the case of uncorrelated and correlated models. By proving basic estimations we try to deduce general properties describing multi-model ensemble systems. We show also how mathematical formalism can be used for investigation of the characteristics of such systems.
引用
收藏
页码:9471 / 9489
页数:19
相关论文
共 50 条
  • [31] Bayesian multi-model projections of climate: generalization and application to ENSEMBLES results
    Buser, C. M.
    Kuensch, H. R.
    Schaer, C.
    CLIMATE RESEARCH, 2010, 44 (2-3) : 227 - 241
  • [32] Multi-model ensembles for regional and national wheat yield forecasts in Argentina
    Zachow, Maximilian
    Kunstmann, Harald
    Miralles, Daniel Julio
    Asseng, Senthold
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (08):
  • [33] Benefits and limitations of regional multi-model ensembles for storm loss estimations
    Donat, Markus G.
    Leckebusch, Gregor C.
    Wild, Simon
    Ulbrich, Uwe
    CLIMATE RESEARCH, 2010, 44 (2-3) : 211 - 225
  • [34] Pauci ex tanto numero: reduce redundancy in multi-model ensembles
    Solazzo, E.
    Riccio, A.
    Kioutsioukis, I.
    Galmarini, S.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (16) : 8315 - 8333
  • [35] Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles
    Matthew Collins
    Ben B. B. Booth
    B. Bhaskaran
    Glen R. Harris
    James M. Murphy
    David M. H. Sexton
    Mark J. Webb
    Climate Dynamics, 2011, 36 : 1737 - 1766
  • [36] Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles
    Collins, Matthew
    Booth, Ben B. B.
    Bhaskaran, B.
    Harris, Glen R.
    Murphy, James M.
    Sexton, David M. H.
    Webb, Mark J.
    CLIMATE DYNAMICS, 2011, 36 (9-10) : 1737 - 1766
  • [37] A Bayesian hierarchical approach for spatial analysis of climate model bias in multi-model ensembles
    Maeregu Woldeyes Arisido
    Carlo Gaetan
    Davide Zanchettin
    Angelo Rubino
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 2645 - 2657
  • [38] A Bayesian hierarchical approach for spatial analysis of climate model bias in multi-model ensembles
    Arisido, Maeregu Woldeyes
    Gaetan, Carlo
    Zanchettin, Davide
    Rubino, Angelo
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (10) : 2645 - 2657
  • [39] Probabilistic prediction of climate using multi-model ensembles: from basics to applications
    Palmer, TN
    Doblas-Reyes, FJ
    Hagedorn, R
    Weisheimer, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1463) : 1991 - 1998
  • [40] Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada
    Al Samouly, Aly
    Luong, Chanh Nien
    Li, Zhong
    Smith, Spencer
    Baetz, Brian
    Ghaith, Maysara
    ENVIRONMENTAL EARTH SCIENCES, 2018, 77 (13)