On the volume of projections of the cross-polytope

被引:2
|
作者
Ivanov, Grigory [1 ,2 ]
机构
[1] Inst Sci & Technol Austria IST Austria, Kleusteneuburg, Austria
[2] Moscow Inst Phys & Technol, Dept Higher Math, Inst Skii Pereulok 9, Dolgoprudnyi 141700, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
Tight frame; Isotropic measure; Projection of cross-polytope; Ball's inequality;
D O I
10.1016/j.disc.2021.112312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study properties of the volume of projections of the n-dimensional cross-polytope lozenge(n) = {x is an element of R-n vertical bar vertical bar x(1)vertical bar +...+ vertical bar x(n)vertical bar <= 1}. We prove that the projection of lozenge(n) onto a k-dimensional coordinate subspace has the maximum possible volume for k = 2 and for k = 3. We obtain the exact lower bound on the volume of such a projection onto a two-dimensional plane. Also, we show that there exist local maxima which are not global ones for the volume of a projection of lozenge(n) onto a k-dimensional subspace for any n > k >= 2. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The minimal volume of a lattice polytope
    Sainose, Ichiro
    Hamano, Ginji
    Emura, Tatsuo
    Hibi, Takayuki
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 85 : 159 - 163
  • [22] The volume of the Newton polytope of a discriminant
    Orevkov, SY
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (05) : 1033 - 1034
  • [23] On the volume of the polytope of doubly stochastic matrices
    Chan, CS
    Robbins, DP
    EXPERIMENTAL MATHEMATICS, 1999, 8 (03) : 291 - 300
  • [24] THE EXPECTED VOLUME OF A RANDOM POLYTOPE IN A BALL
    AFFENTRANGER, F
    JOURNAL OF MICROSCOPY, 1988, 151 : 277 - 287
  • [25] Sectional genus and the volume of a lattice polytope
    Ryo Kawaguchi
    Journal of Algebraic Combinatorics, 2021, 53 : 1253 - 1264
  • [26] Formulae for polytope volume and surface moments
    Sheynin, SA
    Tuzikov, AV
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2001, : 720 - 723
  • [27] Sectional genus and the volume of a lattice polytope
    Kawaguchi, Ryo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1253 - 1264
  • [28] A NOTE ON THE VOLUME OF A RANDOM POLYTOPE IN A TETRAHEDRON
    BUCHTA, C
    ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (04) : 653 - 659
  • [29] Partitioning the triangles of the cross polytope into surfaces
    Spreer, Jonathan
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (02): : 473 - 486
  • [30] On the maximum dual volume of a canonical Fano polytope
    Balletti, Gabriele
    Kasprzyk, Alexander M.
    Nill, Benjamin
    FORUM OF MATHEMATICS SIGMA, 2022, 10