On the volume of projections of the cross-polytope

被引:2
|
作者
Ivanov, Grigory [1 ,2 ]
机构
[1] Inst Sci & Technol Austria IST Austria, Kleusteneuburg, Austria
[2] Moscow Inst Phys & Technol, Dept Higher Math, Inst Skii Pereulok 9, Dolgoprudnyi 141700, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
Tight frame; Isotropic measure; Projection of cross-polytope; Ball's inequality;
D O I
10.1016/j.disc.2021.112312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study properties of the volume of projections of the n-dimensional cross-polytope lozenge(n) = {x is an element of R-n vertical bar vertical bar x(1)vertical bar +...+ vertical bar x(n)vertical bar <= 1}. We prove that the projection of lozenge(n) onto a k-dimensional coordinate subspace has the maximum possible volume for k = 2 and for k = 3. We obtain the exact lower bound on the volume of such a projection onto a two-dimensional plane. Also, we show that there exist local maxima which are not global ones for the volume of a projection of lozenge(n) onto a k-dimensional subspace for any n > k >= 2. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条