Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method

被引:21
|
作者
Nazin, A., V [1 ]
Nemirovsky, A. S. [2 ]
Tsybakov, A. B. [3 ]
Juditsky, A. B. [4 ]
机构
[1] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] ENSAE, CREST, Palaiseau, France
[4] Univ Grenoble Alpes, Grenoble, France
基金
俄罗斯科学基金会;
关键词
robust iterative algorithms; stochastic optimization algorithms; convex composite stochastic optimization; mirror descent method; robust confidence sets; APPROXIMATION ALGORITHMS; CONVERGENCE;
D O I
10.1134/S0005117919090042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Gaussian confidence bounds under weak assumptions about the tails of the noise distribution in convex and strongly convex settings. Robust estimates of the accuracy of general stochastic algorithms are also proposed.
引用
收藏
页码:1607 / 1627
页数:21
相关论文
共 50 条
  • [11] Stochastic incremental mirror descent algorithms with Nesterov smoothing
    Bitterlich, Sandy
    Grad, Sorin-Mihai
    [J]. NUMERICAL ALGORITHMS, 2024, 95 (01) : 351 - 382
  • [12] A CHARACTERIZATION OF STOCHASTIC MIRROR DESCENT ALGORITHMS AND THEIR CONVERGENCE PROPERTIES
    Azizan, Navid
    Hassibi, Babak
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5167 - 5171
  • [13] Stochastic incremental mirror descent algorithms with Nesterov smoothing
    Sandy Bitterlich
    Sorin-Mihai Grad
    [J]. Numerical Algorithms, 2024, 95 : 351 - 382
  • [14] Gossip-based distributed stochastic mirror descent for constrained optimization
    Fang, Xianju
    Zhang, Baoyong
    Yuan, Deming
    [J]. NEURAL NETWORKS, 2024, 175
  • [15] STOCHASTIC BLOCK MIRROR DESCENT METHODS FOR NONSMOOTH AND STOCHASTIC OPTIMIZATION
    Dang, Cong D.
    Lan, Guanghui
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 856 - 881
  • [16] Primal-Dual Mirror Descent Method for Constraint Stochastic Optimization Problems
    Bayandina, A. S.
    Gasnikov, A. V.
    Gasnikova, E. V.
    Matsievskii, S. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (11) : 1728 - 1736
  • [17] Stochastic Mirror Descent in Variationally Coherent Optimization Problems
    Zhou, Zhengyuan
    Mertikopoulos, Panayotis
    Bambos, Nicholas
    Boyd, Stephen
    Glynn, Peter
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [18] Validation analysis of mirror descent stochastic approximation method
    Guanghui Lan
    Arkadi Nemirovski
    Alexander Shapiro
    [J]. Mathematical Programming, 2012, 134 : 425 - 458
  • [19] Validation analysis of mirror descent stochastic approximation method
    Lan, Guanghui
    Nemirovski, Arkadi
    Shapiro, Alexander
    [J]. MATHEMATICAL PROGRAMMING, 2012, 134 (02) : 425 - 458
  • [20] Optimal distributed stochastic mirror descent for strongly convex optimization
    Yuan, Deming
    Hong, Yiguang
    Ho, Daniel W. C.
    Jiang, Guoping
    [J]. AUTOMATICA, 2018, 90 : 196 - 203