Numerical subspace algorithms for solving the tensor equations involving Einstein product

被引:14
|
作者
Huang, Baohua [1 ]
Li, Wen [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
conjugate residual algorithm; Einstein product; generalized conjugate residual algorithm; image restoration; projection method; tensor equation; LINEAR-SYSTEMS; INVERSE;
D O I
10.1002/nla.2351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose some subspace methods such as the conjugate residual, generalized conjugate residual, biconjugate gradient, conjugate gradient squared and biconjugate gradient stabilized methods based on the tensor forms for solving the tensor equation involving the Einstein product. These proposed algorithms keep the tensor structure. The convergence analysis shows that the proposed methods converge to the solution of the tensor equation for any initial value. Some numerical results confirm the feasibility and applicability of the proposed algorithms in practice.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations
    Vivas-Cortez, Miguel
    Ali, Naseem Zulfiqar
    Khan, Awais Gul
    Awan, Muhammad Uzair
    AXIOMS, 2023, 12 (07)
  • [32] Generalized bilateral inverses of tensors via Einstein product with applications to singular tensor equations
    Kheirandish, Ehsan
    Salemi, Abbas
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [33] Generalized bilateral inverses of tensors via Einstein product with applications to singular tensor equations
    Ehsan Kheirandish
    Abbas Salemi
    Computational and Applied Mathematics, 2023, 42
  • [34] Solving Linear Tensor Equations
    Iosifidis, Damianos
    UNIVERSE, 2021, 7 (10)
  • [35] Weighted numerical range and weighted numerical radius for even-order tensor via Einstein product
    Be, Aaisha
    Mishra, Debasisha
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 1861 - 1888
  • [36] THE TENSOR PRODUCT FORMULA FOR REFLEXIVE SUBSPACE LATTICES
    HARRISON, KJ
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03): : 308 - 316
  • [37] Eigenvectors and eigenvalues in a random subspace of a tensor product
    Belinschi, Serban
    Collins, Benoit
    Nechita, Ion
    INVENTIONES MATHEMATICAE, 2012, 190 (03) : 647 - 697
  • [38] Eigenvectors and eigenvalues in a random subspace of a tensor product
    Serban Belinschi
    Benoît Collins
    Ion Nechita
    Inventiones mathematicae, 2012, 190 : 647 - 697
  • [39] Numerical algorithms for solving a type of nonlinear integro-differential equations
    Xie, Shishen
    World Academy of Science, Engineering and Technology, 2010, 65 : 1083 - 1086
  • [40] Solving Einstein's equations on supercomputers
    Allen, G
    Goodale, T
    Lanfermann, G
    Radke, T
    Seidel, E
    Benger, W
    Hege, HC
    Merzky, A
    Massó, J
    Shalf, J
    COMPUTER, 1999, 32 (12) : 52 - +