A new approach to building histogram for selectivity estimation in query processing optimization

被引:4
|
作者
Lu, Xin [2 ]
Guan, Jihong [1 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Sch Elect & Informat, Shanghai 200092, Peoples R China
[2] Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Selectivity estimation; Histogram; Query optimization;
D O I
10.1016/j.camwa.2008.10.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, histograms have been considered as an effective way to produce quick approximate answers to decision support queries. They are also taken as a basic tool for data visualization and analysis. In this paper, we propose a new approach to constructing histograms for selectivity estimation in query processing optimization. Our approach uses a new criterion, i.e., aggregate error minimization, to direct the construction of the target histogram. We develop the algorithm of aggregate error minimization based histogram construction, and demonstrate the effectiveness and efficiency of the proposed approach by experiments over both real-world and synthetic datasets. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1037 / 1047
页数:11
相关论文
共 50 条
  • [41] Efficient histogram-based range query estimation for dirty data
    Yan Zhang
    Hongzhi Wang
    Long Yang
    Jianzhong Li
    Frontiers of Computer Science, 2018, 12 : 984 - 999
  • [42] AN ALGORITHMIC APPROACH TO QUERY OPTIMIZATION
    BAIZAN, MCF
    MORENO, AG
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1991, 10 (04): : 355 - 380
  • [43] A general approach to nonparametric histogram estimation
    Jacob, P
    Oliveira, PE
    STATISTICS, 1995, 27 (1-2) : 73 - 92
  • [44] Depth estimation for ranking query optimization
    Schnaitter, Karl
    Spiegel, Joshua
    Polyzotis, Neoklis
    VLDB JOURNAL, 2009, 18 (02): : 521 - 542
  • [45] Depth estimation for ranking query optimization
    Karl Schnaitter
    Joshua Spiegel
    Neoklis Polyzotis
    The VLDB Journal, 2009, 18 : 521 - 542
  • [46] The Analytical Bootstrap: a New Method for Fast Error Estimation in Approximate Query Processing
    Zeng, Kai
    Gao, Shi
    Mozafari, Barzan
    Zaniolo, Carlo
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 277 - 288
  • [47] Parallel Approach in RDF Query Processing
    Vajgl, Marek
    Parenica, Jan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [48] A metadata approach to statistical query processing
    Froeschl, KA
    STATISTICS AND COMPUTING, 1996, 6 (01) : 11 - 29
  • [49] An intelligent approach to semantic query processing
    Haseman, WD
    Lin, TC
    Nazareth, DL
    ASSOCIATION FOR INFORMATION SYSTEMS - PROCEEDINGS OF THE FIFTH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 1999), 1999, : 52 - 54
  • [50] An approach for semantic query processing with UDDI
    Luo, J
    Montrose, B
    Kang, M
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2005: OTM 2005 WORKSHOPS, PROCEEDINGS, 2005, 3762 : 89 - 98