Momentum dependence of pseudo-gap and superconducting gap in variation theory

被引:7
|
作者
Watanabe, T. [2 ]
Yokoyama, H. [3 ]
Shigeta, K. [4 ]
Ogata, M. [1 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[4] Nagoya Univ, Dept Appl Phys, Nagoya, Aichi 4648603, Japan
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
T-J MODEL; FERMI-SURFACE; MONTE-CARLO; ANTIFERROMAGNETISM; STATE;
D O I
10.1088/1367-2630/11/7/075011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To consider the origin of a pseudo-gap and a superconducting gap found in the high-T-c cuprates, the momentum dependence of the singlet gap parameter and the superconductivity correlation function are evaluated in the t-J model by using an optimization variational Monte Carlo method. In the underdoped regime, the singlet gap is significantly modified from the simple d(x2-y2)-wave gap (proportional to cos k(x) - cos k(y)) by the contributions of long-range pairings. Its angular dependence along the Fermi surface is qualitatively consistent with those experimentally observed in both hole-and electron-doped cuprates. This singlet gap will correspond to the pseudo-gap and its doping dependence agrees with that of the pseudo-gap. On the other hand, the superconductivity correlation function is dominant in the nearest-neighbor pairing and its Fourier transform preserves the original simple d(x2-y2)-wave form. We argue that this superconductivity correlation function is closely related to the coherent superconductivity gap appearing below T-c in the 'Fermi arc' region. Its doping dependence is also consistent with the recent experimental observations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Gordian knot in the pseudo-gap phase of hole-underdoped cuprates
    Goswami, Partha
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (03): : 603 - 608
  • [42] RKKY interaction and a pseudo-gap in terahertz conductivity spectra of the AuFe spin glass
    A. S. Prokhorov
    E. S. Zhukova
    I. E. Spektor
    B. P. Gorshunov
    M. B. S. Hesselberth
    J. Aarts
    G. J. Nieuwenhuys
    S. Kaiser
    M. Dressel
    The Physics of Metals and Metallography, 2008, 106
  • [43] In plane charge transportation in pseudo-gap regime of high-TC superconductors
    Shaw, M
    Wen, HH
    Zhao, ZX
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2000, 341 : 919 - 920
  • [44] Fractionalizing a Local Pair Density Wave: a Good "Recipe" for Opening a Pseudo-gap
    Grandadam, M.
    Chakraborty, D.
    Pepin, C.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (08) : 2361 - 2368
  • [45] RKKY interaction and a pseudo-gap in terahertz conductivity spectra of the AuFe spin glass
    Prokhorov, A. S.
    Zhukova, E. S.
    Spektor, I. E.
    Gorshunov, B. P.
    Hesselberth, M. B. S.
    Aarts, J.
    Nieuwenhuys, G. J.
    Kaiser, S.
    Dressel, M.
    PHYSICS OF METALS AND METALLOGRAPHY, 2008, 106 (03): : 247 - 252
  • [46] Presence of a pseudo-gap feature in the density of states of disordered W/Si alloys
    Osofsky, MS
    Soulen, RJ
    Claassen, JH
    Nadgorny, B
    Horwitz, JS
    Trotter, G
    Kim, H
    PHYSICA C, 2001, 364 : 427 - 429
  • [47] Evolution of symmetry-broken states in the pseudo-gap regimes of nickelates and cuprates
    Bozin, Emil
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S4 - S4
  • [48] Fractionalizing a Local Pair Density Wave: a Good “Recipe” for Opening a Pseudo-gap
    M. Grandadam
    D. Chakraborty
    C. Pépin
    Journal of Superconductivity and Novel Magnetism, 2020, 33 : 2361 - 2368
  • [49] Monte Carlo study of pseudo-gap temperature T* within JJA model
    Kawabata, C
    Takeuchi, M
    Hayashi, N
    Ono, F
    Shenoy, SR
    Bishop, AR
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 388 : 31 - 32
  • [50] PSEUDO-GAP MODEL FOR KCP. APPLICATION TO THE NEAR INFRARED CONDUCTIVITY.
    Baldea, Ioan
    Apostol, Marian
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 143 (1-3): : 276 - 278