Momentum dependence of pseudo-gap and superconducting gap in variation theory

被引:7
|
作者
Watanabe, T. [2 ]
Yokoyama, H. [3 ]
Shigeta, K. [4 ]
Ogata, M. [1 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[4] Nagoya Univ, Dept Appl Phys, Nagoya, Aichi 4648603, Japan
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
T-J MODEL; FERMI-SURFACE; MONTE-CARLO; ANTIFERROMAGNETISM; STATE;
D O I
10.1088/1367-2630/11/7/075011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To consider the origin of a pseudo-gap and a superconducting gap found in the high-T-c cuprates, the momentum dependence of the singlet gap parameter and the superconductivity correlation function are evaluated in the t-J model by using an optimization variational Monte Carlo method. In the underdoped regime, the singlet gap is significantly modified from the simple d(x2-y2)-wave gap (proportional to cos k(x) - cos k(y)) by the contributions of long-range pairings. Its angular dependence along the Fermi surface is qualitatively consistent with those experimentally observed in both hole-and electron-doped cuprates. This singlet gap will correspond to the pseudo-gap and its doping dependence agrees with that of the pseudo-gap. On the other hand, the superconductivity correlation function is dominant in the nearest-neighbor pairing and its Fourier transform preserves the original simple d(x2-y2)-wave form. We argue that this superconductivity correlation function is closely related to the coherent superconductivity gap appearing below T-c in the 'Fermi arc' region. Its doping dependence is also consistent with the recent experimental observations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Momentum dependence of pseudogap and superconducting gap in variation theory
    Watanabe, T.
    Yokoyama, H.
    Ogata, M.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2009, 469 (15-20): : 1009 - 1012
  • [2] Superconducting phenomenology of cuprates: effect of pseudo-gap and other anomalies
    Hanaguri, T
    Naito, M
    Kitazawa, K
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1999, 317 : 345 - 352
  • [3] A possible mechanism of the pseudo-gap in organic superconductor on the basis of the superconducting fluctuation
    Jujo, T
    Yamada, K
    [J]. PHYSICA B, 2000, 281 : 794 - 795
  • [4] The YBCO nonlinearity magnetization above superconducting transition and pseudo-gap structure
    Kumichev, N. D.
    Slavkin, V. V.
    Martinov, Yu. A.
    Golovashkin, A. I.
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 460 : 454 - 455
  • [5] Impurity resonances and the origin of the pseudo-gap
    Andersen, BM
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (04) : 659 - 663
  • [6] Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates
    Jung, Woobeen
    Song, Dongjoon
    Cho, Su Hyun
    Kim, Changyoung
    Park, Seung Ryong
    [J]. PROGRESS IN SUPERCONDUCTIVITY AND CRYOGENICS, 2016, 18 (02): : 14 - 17
  • [7] Momentum dependence and nodes of the superconducting gap in the iron pnictides
    Chubukov, A. V.
    Vavilov, M. G.
    Vorontsov, A. B.
    [J]. PHYSICAL REVIEW B, 2009, 80 (14):
  • [8] Anderson impurity in pseudo-gap Fermi systems
    Bulla, R
    Pruschke, T
    Hewson, AC
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (47) : 10463 - 10474
  • [9] Van Hove singularity and "pseudo-gap" in HTSC
    Bouvier, J
    Bok, J
    [J]. JOURNAL OF SUPERCONDUCTIVITY, 1997, 10 (06): : 673 - 675
  • [10] Van hove singularity and “pseudo-gap” in HTSC
    J. Bouvier
    J. Bok
    [J]. Journal of Superconductivity, 1997, 10 : 673 - 675