Coherent and squeezed phonons in single wall carbon nanotubes

被引:0
|
作者
Nugraha, A. R. T. [1 ,2 ]
Hasdeo, E. H. [2 ]
机构
[1] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[2] Indonesian Inst Sci, Res Ctr Phys, Tangerang Selatan 15214, Indonesia
关键词
D O I
10.1088/1742-6596/1191/1/012002
中图分类号
O59 [应用物理学];
学科分类号
摘要
Coherent states of phonon manifest in macroscopic beatings of reflectance or transmittance following the phonons frequencies when a material is excited with an ultrashort pulse. Such beatings predominantly arise from a single phonon excitation. The two-phonon (overtone or combination modes) excitations, such as the G' (or 2D) band phonons in single wall carbon nanotubes (SWNTs), on the other hand, are not compatible with the coherent phonon states picture. Nevertheless, their macroscopic beatings are observed in the experiment. Here we formulate a more general framework involving the so-called squeezed states of phonon to explain the origin of the two-phonon signals in the pump-probe experiment of SWNTs. For a given SWNT chirality, the G' band phonon intensity in terms of the squeezed states of phonons is compared with that in terms of coherent states of phonons. Our calculation reveals that the G' band intensity from the squeezed states of phonons is some orders of magnitude larger than that from the coherent states of phonons. We also compare the G' band phonon intensity with the intensities of other coherent phonon modes generated in ultrafast spectroscopy such as the G band. Furthermore, the coherent G band and squeezed G' band phonon intensities are found to be sensitive to the laser pulse width used in ultrafast spectroscopy.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Resonance enhancement of first- and second-order coherent phonons in metallic single-walled carbon nanotubes
    Sato, K.
    Tahara, K.
    Minami, Y.
    Katayama, I.
    Kitajima, M.
    Kawai, H.
    Yanagi, K.
    Takeda, J.
    PHYSICAL REVIEW B, 2014, 90 (23)
  • [32] Thermal conductance for single wall carbon nanotubes
    Zheng, QR
    Su, G
    Hong, JW
    Guo, H
    EUROPEAN PHYSICAL JOURNAL B, 2002, 25 (02): : 233 - 238
  • [33] Carbon single wall nanotubes elaboration and properties
    Bernier, P
    Maser, W
    Jouret, C
    Loiseau, A
    de la Chapelle, ML
    Lefrant, S
    Lee, R
    Fischer, JE
    CARBON, 1998, 36 (5-6) : 675 - 680
  • [34] Purification of single-wall carbon nanotubes
    Shi, ZJ
    Lian, YF
    Liao, FH
    Zhou, XH
    Gu, ZN
    Zhang, YG
    Iijima, S
    SOLID STATE COMMUNICATIONS, 1999, 112 (01) : 35 - 37
  • [35] Vibrational spectra of single wall carbon nanotubes
    Kuzmany, H
    Burger, B
    Thess, A
    Shalley, RE
    CARBON, 1998, 36 (5-6) : 709 - 712
  • [36] Electron spin in single wall carbon nanotubes
    Lindelof, PE
    Borggreen, J
    Jensen, A
    Nygård, J
    Poulsen, PR
    PHYSICA SCRIPTA, 2002, T102 : 22 - 29
  • [37] Solar synthesis of single wall carbon nanotubes
    Alvarez, L
    Guillard, T
    Anglaret, E
    Sauvajol, JL
    Bernier, P
    Flamant, G
    Olalde, G
    Laplaze, D
    Martinez, MT
    Benito, A
    Maser, WK
    ELECTRONIC PROPERTIES OF NOVEL MATERIALS - SCIENCE AND TECHNOLOGY OF MOLECULAR NANOSTRUCTURES, 1999, 486 : 254 - 257
  • [38] Colorings of single-wall carbon nanotubes
    Loyola, Mark L.
    De Las Ferias, Ma Louise Antonette N.
    Basilio, Antonio M.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2012, 227 (10): : 672 - 680
  • [39] Fluorinated single-wall carbon nanotubes
    Kudin, KN
    Bettinger, HF
    Scuseria, GE
    PHYSICAL REVIEW B, 2001, 63 (04)
  • [40] Lithium storage in single wall carbon nanotubes
    Gao, B
    Shimoda, H
    Tang, XP
    Kleinhammes, A
    Fleming, L
    Wu, Y
    Zhou, O
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 95 - 99