A particle swarm optimization algorithm based on an improved deb criterion for constrained optimization problems

被引:0
|
作者
Sun, Ying [1 ,2 ]
Shi, Wanyuan [2 ]
Gao, Yuelin [1 ,2 ]
机构
[1] North Minzu Univ, Collaborat Innovat Ctr Sci Comp & Intelligent Pro, Yinchuan, Ningxia, Peoples R China
[2] North Minzu Univ, Sch Math & Informat Sci, Yinchuan, Ningxia, Peoples R China
关键词
Particle swarm optimization algorithm; Constrained optimization problems; Deb criterion; EVOLUTIONARY;
D O I
10.7717/peerj-cs.1178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To solve the nonlinear constrained optimization problem, a particle swarm optimization algorithm based on the improved Deb criterion (CPSO) is proposed. Based on the Deb criterion, the algorithm retains the information of 'excellent' infeasible solutions. The algorithm uses this information to escape from the local best solution and quickly converge to the global best solution. Additionally, to further improve the global search ability of the algorithm, the DE strategy is used to optimize the personal best position of the particle, which speeds up the convergence speed of the algorithm. The performance of our method was tested on 24 benchmark problems from IEEE CEC2006 and three real-world constraint optimization problems from CEC2020. The simulation results show that the CPSO algorithm is effective.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Improved Particle Swarm Optimization Based on Genetic Algorithm
    Dou, Chunhong
    Lin, Jinshan
    SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING: THEORY AND PRACTICE, VOL 2, 2012, 115 : 149 - 153
  • [42] Improved VRP based on particle swarm optimization algorithm
    Chen, Zixia
    Xuan, Youshi
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 436 - 439
  • [43] Solving constrained nonlinear optimization problems with particle swarm optimization
    Hu, XH
    Eberhart, R
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCI I, 2002, : 203 - 206
  • [44] Solving constrained optimization problems with hybrid particle swarm optimization
    Zahara, Erwie
    Hu, Chia-Hsin
    ENGINEERING OPTIMIZATION, 2008, 40 (11) : 1031 - 1049
  • [45] An improved particle swarm optimization algorithm
    Jiang, Yan
    Hu, Tiesong
    Huang, ChongChao
    Wu, Xianing
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) : 231 - 239
  • [46] An improved particle swarm optimization algorithm
    Xin Zhang
    Yuzhong Zhou
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13 : 802 - 805
  • [47] An Improved Particle Swarm Optimization Algorithm
    Ni, Hongmei
    Wang, Weigang
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 809 - +
  • [48] A Novel Particle Swarm Optimization for Constrained Engineering Optimization Problems
    Jiao, Minghai
    Tang, Jiafu
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 79 - +
  • [49] An Improved Particle Swarm Optimization Algorithm
    Wang, Fangxiu
    Zhou, Kong
    2012 INTERNATIONAL CONFERENCE ON INTELLIGENCE SCIENCE AND INFORMATION ENGINEERING, 2012, 20 : 156 - 158
  • [50] An Improved Particle Swarm Optimization Algorithm
    Lu, Lin
    Luo, Qi
    Liu, Jun-yong
    Long, Chuan
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 486 - 490