Trajectory via-point generation for autonomous mobile manipulation using 3D LiDAR data

被引:2
|
作者
Wrock, Michael R. [1 ]
Nokleby, Scott B. [1 ]
机构
[1] Ontario Tech Univ, Fac Engn & Appl Sci, Oshawa, ON L1G 0C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
trajectory generation; autonomous; shotcrete; underground mining; SURFACE;
D O I
10.1139/tcsme-2019-0179
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, an approach to generating a set of via points for use in manipulator trajectory path planning is presented. The approach was developed for use on a robotic underground mining system, particularly for the task of autonomous application of a sprayable concrete called shotcrete. A LiDAR (light detection and ranging) scanner on a nodding head produces point clouds that are used as the input for the via-point selection algorithm. The algorithm generates a set of position and orientation via points that the manipulator must follow to perform the shotcreting task. The developed algorithm has been successfully tested on an autonomous mobile-manipulator system in a scaled mock-up of an underground mine. The main advantage of this algorithm is the ability to generate via points for any section of an underground mine in any position relative to the robot.
引用
收藏
页码:530 / 540
页数:11
相关论文
共 50 条
  • [41] A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds
    Yanjun WANG
    Shaochun LI
    Mengjie WANG
    Yunhao LIN
    [J]. Journal of Geodesy and Geoinformation Science, 2021, 4 (03) : 49 - 59
  • [42] Autonomous 3D scene understanding and exploration in cluttered workspaces using point cloud data
    Ji, Ze
    Schruoffeneger, Raphael
    Setchi, Rossitza
    [J]. 2018 IEEE 15TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2018,
  • [43] 3D Global Localization in the Underground Mine Environment Using Mobile LiDAR Mapping and Point Cloud Registration
    Baek, Jieun
    Park, Junhyeok
    Cho, Seongjun
    Lee, Changwon
    [J]. SENSORS, 2022, 22 (08)
  • [44] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [45] A Survey on 3D LiDAR Localization for Autonomous Vehicles
    Elhousni, Mahdi
    Huang, Xinming
    [J]. 2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1879 - 1884
  • [46] Detection of Road Obstacles Using 3D Lidar Data via Road Plane Fitting
    Chen, Xiong
    Deng, Zhidong
    [J]. PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 441 - 449
  • [47] Monitoring Critical Infrastructure Using 3D LiDAR Point Clouds
    Sharifisoraki, Z.
    Dey, A.
    Selzler, R.
    Amini, M.
    Green, J. R.
    Rajan, S.
    Kwamena, F. A.
    [J]. IEEE ACCESS, 2023, 11 : 314 - 336
  • [48] A framework for automatic classification of mobile LiDAR data using multiple regions and 3D CNN architecture
    Kumar, Bhavesh
    Pandey, Gaurav
    Lohani, Bharat
    Misra, Subhas C.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (14) : 5588 - 5608
  • [49] 3D Gaze Point Localization and Visualization Using LiDAR-based 3D Reconstructions
    Pieszala, James
    Diaz, Gabriel
    Pelz, Jeff
    Speir, Jacqueline
    Bailey, Reynold
    [J]. 2016 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2016), 2016, : 201 - 204
  • [50] Drogue tracking using 3D flash lidar for autonomous aerial refueling
    Chen, Chao-I
    Stettner, Roger
    [J]. LASER RADAR TECHNOLOGY AND APPLICATIONS XVI, 2011, 8037