LIOUVILLE THEOREMS FOR FRACTIONAL HENON EQUATION AND SYSTEM ON Rn

被引:26
|
作者
Dou, Jingbo [1 ]
Zhou, Huaiyu [1 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted Hardy-Littlewood-Sobolev inequality; Henon equation; Liouville type theorem; method of moving planes; HARDY-LITTLEWOOD-SOBOLEV; POSITIVE SOLUTIONS; INTEGRAL-EQUATIONS; CLASSIFICATION;
D O I
10.3934/cpaa.2015.14.1915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some Liouville type theorems for positive solutions of fractional Henon equation and system in R-n. First, under some regularity conditions, we show that the above equation and system are equivalent to the some integral equation and system, respectively. Then, we prove Liouville type theorems via the method of moving planes in integral forms.
引用
收藏
页码:1915 / 1927
页数:13
相关论文
共 50 条
  • [31] Liouville Type Theorems for Fractional Parabolic Problems
    Anh Tuan Duong
    Van Hoang Nguyen
    Journal of Dynamics and Differential Equations, 2023, 35 : 3187 - 3200
  • [32] Liouville Type Theorems for Fractional Parabolic Problems
    Duong, Anh Tuan
    Nguyen, Van Hoang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (04) : 3187 - 3200
  • [33] LIOUVILLE THEOREMS FOR THE MULTIDIMENSIONAL FRACTIONAL BESSEL OPERATORS
    Galli, Vanesa
    Molina, Sandra
    Quintero, Alejandro
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (04): : 1099 - 1129
  • [34] Liouville type theorems, a priori estimates and existence of solutions for critical and super-critical order Hardy-Henon type equations in Rn
    Chen, Wenxiong
    Dai, Wei
    Qin, Guolin
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (04)
  • [35] Liouville-type theorems and bounds of solutions of Hardy-Henon equations
    Quoc Hung Phan
    Souplet, Philippe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2544 - 2562
  • [36] Liouville type theorems for the system of fractional nonlinear equations in R+n
    Dai, Zhaohui
    Cao, Linfen
    Wang, Pengyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [37] Application of the Fractional Sturm–Liouville Theory to a Fractional Sturm–Liouville Telegraph Equation
    M. Ferreira
    M. M. Rodrigues
    N. Vieira
    Complex Analysis and Operator Theory, 2021, 15
  • [38] LIOUVILLE THEOREMS FOR AN INTEGRAL EQUATION OF CHOQUARD TYPE
    Phuong Le
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) : 771 - 783
  • [39] Liouville-Type Theorems for Fractional and Higher-Order Henon-Hardy Type Equations via the Method of Scaling Spheres
    Dai, Wei
    Qin, Guolin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (11) : 9001 - 9070
  • [40] Rigidity and gap theorems for Liouville's equation
    Shen, Weiming
    Wang, Yue
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (10)