On regressive Ramsey numbers

被引:2
|
作者
Blanchard, PF [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
D O I
10.1006/jcta.2002.3287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following relation between regressive and classical Ramsey numbers R-reg(n) (n + 2) Rn-1(n) + 2. This is used to compute R-reg(3) (5) = 8, R-reg(4) (6) = 15, and R-reg(5)(7) greater than or equal to 36. We prove that R-x+k(2) (3 + k) - (k + 1), and use this to compute R-reg(2) (5) = 15. Finally, we provide the bounds 195less than or equal toR(reg)(2) (6) less than or equal to 5.2(42) + 2(39) - 2. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:189 / 195
页数:7
相关论文
共 50 条
  • [31] Ramsey Numbers of Trails
    Osumi, Masatoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [32] Distance ramsey numbers
    A. B. Kupavskii
    M. V. Titova
    Doklady Mathematics, 2013, 87 : 171 - 174
  • [33] Signed Ramsey Numbers
    Mutar, Mohammed A.
    Sivaraman, Vaidy
    Slilaty, Daniel
    GRAPHS AND COMBINATORICS, 2024, 40 (01)
  • [34] On Ramsey numbers of fans
    Lin, Qizhong
    Li, Yusheng
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) : 191 - 194
  • [35] Weakened Ramsey numbers
    Harborth, H
    Möller, M
    DISCRETE APPLIED MATHEMATICS, 1999, 95 (1-3) : 279 - 284
  • [36] Chromatic Ramsey numbers
    Zhu, XD
    DISCRETE MATHEMATICS, 1998, 190 (1-3) : 215 - 222
  • [37] RAMSEY NUMBERS FOR TREES
    Sun, Zhi-Hong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (01) : 164 - 176
  • [38] Ramsey numbers for tournaments
    Manoussakis, Y
    Tuza, Z
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 75 - 85
  • [39] Induced Ramsey Numbers
    Y. Kohayakawa,
    H. J. Prömel
    V. Rödl
    Combinatorica, 1998, 18 : 373 - 404
  • [40] Constrained Ramsey Numbers
    Loh, Po-Shen
    Sudakov, Benny
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2): : 247 - 258