Experimental validation of gallium production and isotope-dependent positron range correction in PET

被引:8
|
作者
Fraile, L. M. [1 ]
Herraiz, J. L. [1 ]
Udias, J. M. [1 ]
Cal-Gonzalez, J. [1 ,4 ]
Corzo, P. M. G. [1 ,5 ]
Espana, S. [1 ,6 ]
Herranz, E. [1 ,7 ,8 ]
Perez-Liva, M. [1 ]
Picado, E. [1 ,9 ]
Vicente, E. [1 ,10 ]
Munoz-Martin, A. [2 ]
Vaquero, J. J. [3 ]
机构
[1] Univ Complutense Madrid, Dept Fis Atom Mol & Nucl, Grp Fis Nucl, E-28040 Madrid, Spain
[2] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain
[3] Univ Carlos III Madrid, Dept Bioingn & Ingn Aeroespacial, E-28903 Getafe, Spain
[4] Med Univ Vienna, Vienna, Austria
[5] Blue Telecom Consulting, Madrid 28037, Spain
[6] Ctr Nacl Invest Cardiovasc, Madrid 28029, Spain
[7] Massachusetts Gen Hosp, Boston, MA 02114 USA
[8] Harvard Univ, Sch Med, Boston, MA USA
[9] Univ Nacl, Heredia 863000, Costa Rica
[10] Johns Hopkins Univ, Baltimore, MD USA
关键词
Radioisotope production; Positron emission tomography; Positron range; Ga-66; Ga-68; PERFORMANCE;
D O I
10.1016/j.nima.2016.01.013
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with Ga-68 and Ga-66 radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a Ga-68 and Ga-66 phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with Ga-68 and Ga-66 radioisotopes in proton therapy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 116
页数:7
相关论文
共 49 条
  • [1] Impact of Tissue-Dependent Spatially-Variant Positron Range Correction for Gallium-68 on Patient PET Reconstructions
    Gavriilidis, P.
    Koole, M.
    Jansen, F. P.
    Mottaghy, F. M.
    Wierts, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S134 - S134
  • [2] Positron Range Correction for 82Rb myocardial PET: Validation in a healthy cohort
    Lassen, M.
    Kertesz, H.
    Rausch, I.
    Kjaer, A.
    Panin, V.
    Bharkhada, D.
    DeKemp, R.
    Beyer, T.
    Hasbak, P.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S200 - S201
  • [3] Performance evaluation of iterative PET reconstruction with resolution recovery incorporating Gallium-68 positron range correction
    Gavriilidis, Prodromos
    Koole, Michel
    Marinus, Anouk
    Jansen, Floris P.
    Deller, Timothy W.
    Mottaghy, Felix M.
    Wierts, Roel
    MEDICAL PHYSICS, 2024, 51 (09) : 5927 - 5942
  • [4] Positron Range Correction in PET Using an Alternating EM Algorithm
    Agbeko, Norbert N.
    Cheng, Ju-Chieh
    Laforest, Richard
    O'Sullivan, Joseph A.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2875 - 2878
  • [5] Tissue-Dependent and Spatially-Variant Positron Range Correction in 3D PET
    Cal-Gonzalez, Jacobo
    Perez-Liva, Mailyn
    Herraiz, Joaquin L.
    Vaquero, Juan J.
    Desco, Manuel
    Udias, Jose M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (11) : 2394 - 2403
  • [6] Implementation of a Spatially-Variant and Tissue-Dependent Positron Range Correction for PET/CT Imaging
    Kertesz, Hunor
    Beyer, Thomas
    Panin, Vladimir
    Jentzen, Walter
    Cal-Gonzalez, Jacobo
    Berger, Alexander
    Papp, Laszlo
    Kench, Peter L.
    Bharkhada, Deepak
    Cabello, Jorge
    Conti, Maurizio
    Rausch, Ivo
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [7] Evaluation of the artifacts due to the positron range correction in PET image reconstruction using experimental phantom scans
    Cheng, Ju-Chieh
    Laforest, Richard
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [8] PET iterative reconstruction incorporating an efficient positron range correction method
    Bertolli, Ottavia
    Eleftheriou, Afroditi
    Cecchetti, Matteo
    Camarlinghi, Niccol
    Belcari, Nicola
    Tsoumpas, Charalampos
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (02): : 323 - 330
  • [9] Deep-Learning Based Positron Range Correction of PET Images
    Herraiz, Joaquin L.
    Bembibre, Adrian
    Lopez-Montes, Alejandro
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 13
  • [10] Feasibility of positron range correction in 82-Rubidium cardiac PET/CT
    Malte Jensen
    Simon Bentsen
    Andreas Clemmensen
    Jacob Kildevang Jensen
    Johanne Madsen
    Jonas Rossing
    Anna Laier
    Philip Hasbak
    Andreas Kjaer
    Rasmus Sejersten Ripa
    EJNMMI Physics, 9