Torsion structure in Riemann-Cartan manifold and dislocation

被引:3
|
作者
Lee, X [1 ]
Baldo, M
Duan, YS
机构
[1] Natl Heavy Ion Collis, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[3] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy
[4] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
关键词
differential geometry and topology; gauge field theories;
D O I
10.1023/A:1020122904671
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The U(1) gauge structure of torsion and dislocation in three dimensional Riemann-Cartan manifold have been studied. The local topological structure of dislocation have been presented by so-called topological method in which the quantum number is by Hopf indices and Brouwer degree. Furthermore, the relationship between the dislocation lines and Wilson lines of the U(1) gauge theory is discussed by using the Chern-Simons theory.
引用
收藏
页码:1569 / 1577
页数:9
相关论文
共 50 条
  • [31] Gravitation and Electromagnetism as Geometrical Objects of a Riemann-Cartan Spacetime Structure
    J. Fernando T. Giglio
    Waldyr A. Rodrigues
    Advances in Applied Clifford Algebras, 2012, 22 : 649 - 664
  • [32] Tidal heating in a Riemann-Cartan spacetime
    Hensh, Sudipta
    Liberati, Stefano
    Vitagliano, Vincenzo
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [33] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [34] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468
  • [35] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10
  • [36] Riemann-Cartan Gravity with Dynamical Signature
    Bondarenko, S.
    Zubkov, M. A.
    JETP LETTERS, 2022, 116 (01) : 54 - 60
  • [37] Riemann-Cartan geometry of nonlinear disclination mechanics
    Yavari, Arash
    Goriely, Alain
    MATHEMATICS AND MECHANICS OF SOLIDS, 2013, 18 (01) : 91 - 102
  • [38] PROPERTIES OF A SPIN FLUID IN A RIEMANN-CARTAN SPACETIME
    DERITIS, R
    LAVORGNA, M
    PLATANIA, G
    STORNAIOLO, C
    PHYSICS LETTERS A, 1983, 95 (08) : 425 - 428
  • [39] Evaluation of the heat kernel in Riemann-Cartan space
    Yajima, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) : 2423 - 2435
  • [40] Comment on 'Braneworld remarks in Riemann-Cartan manifolds'
    Khakshournia, S.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (17)