The lattice of envy-free matchings

被引:29
|
作者
Wu, Qingyun [1 ]
Roth, Alvin E. [2 ]
机构
[1] Stanford Univ, Dept Management Sci & Engn, Dept Econ, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Econ, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Matching; Envy-free; Lattice; Vacancy chain; COLLEGE ADMISSIONS; STABLE MARRIAGES; SCHOOL CHOICE; STABILITY; PROPERTY; MARKETS; EXISTENCE;
D O I
10.1016/j.geb.2017.12.016
中图分类号
F [经济];
学科分类号
02 ;
摘要
In a many-to-one matching model, we show that the set of envy-free matchings is a lattice. A Tarski operator on this lattice, which can be interpreted as modeling vacancy chains, has the set of stable matchings as its fixed points. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [1] The lattice of envy-free many-to-many matchings with contracts
    Agustin G. Bonifacio
    Nadia Guiñazú
    Noelia Juarez
    Pablo Neme
    Jorge Oviedo
    Theory and Decision, 2024, 96 : 113 - 134
  • [2] The lattice of envy-free many-to-many matchings with contracts
    Bonifacio, Agustin G.
    Guinazu, Nadia
    Juarez, Noelia
    Neme, Pablo
    Oviedo, Jorge
    THEORY AND DECISION, 2024, 96 (01) : 113 - 134
  • [3] Envy-Free Matchings with Lower Quotas
    Yu Yokoi
    Algorithmica, 2020, 82 : 188 - 211
  • [4] Envy-Free Matchings with Lower Quotas
    Yokoi, Yu
    ALGORITHMICA, 2020, 82 (02) : 188 - 211
  • [5] Envy-free matchings in bipartite graphs and their applications to fair division
    Aigner-Horev, Elad
    Segal-Halevi, Erel
    INFORMATION SCIENCES, 2022, 587 : 164 - 187
  • [6] Envy-free matchings with one-sided preferences and matroid constraints
    Kamiyama, Naoyuki
    OPERATIONS RESEARCH LETTERS, 2021, 49 (05) : 790 - 794
  • [7] Envy-Free Classification
    Balcan, Maria-Florina
    Dick, Travis
    Noothigattu, Ritesh
    Procaccia, Ariel D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] On envy-free cake division
    Pikhurko, O
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (08): : 736 - 738
  • [9] Competitive envy-free division
    Sung, SC
    Vlach, M
    SOCIAL CHOICE AND WELFARE, 2004, 23 (01) : 103 - 111
  • [10] ENVY-FREE MAKESPAN APPROXIMATION
    Cohen, Edith
    Feldman, Michal
    Fiat, Amos
    Kaplan, Haim
    Olonetsky, Svetlana
    SIAM JOURNAL ON COMPUTING, 2012, 41 (01) : 12 - 25