We introduce the concept of flat ridges for submanifolds of codimension 2 from the viewpoint of their contact with hyperplanes. We characterize them geometrically, studying some of their properties. In particular, we see that the highest-order flat ridges coincide with the flattenings of the asymptotic lines and from this we obtain some lower bounds for their numbers under appropriate conditions.
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, Brazil
Craizer, Marcos
Saia, Marcelo J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, ICMC SMA, Caixa Postal 668, BR-13560970 Sao Carlos, SP, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, Brazil
Saia, Marcelo J.
Sanchez, Luis F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Uberlandia, FAMAT, Dept Matemat, Rua Goias 2000, BR-38500000 Monte Carmelo, MG, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, Brazil
机构:
Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
Yaroslavl State Univ, Delaunay Lab Discrete & Computat Geometry, Yaroslavl, RussiaMoscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia