Fast and Efficient In-Memory Big Data Processing

被引:0
|
作者
Malik, Babur Hayat [1 ]
Maryam, Maliha [1 ]
Khalid, Myda [1 ]
Khlaid, Javaria [1 ]
Rehman, Naj Am Ur [1 ]
Sajjad, Syeda Iqra [1 ]
Islam, Tanveer [1 ]
Butt, Umair Ahmed [1 ]
Raza, Ali [1 ]
Nasr, M. Saad [1 ]
机构
[1] Univ Lahore, Dept CS & IT, Chenab Campus, Gujrat, Pakistan
关键词
Big data processing; indexing techniques; R-tree; B-tree; X-tree; hashing; inverted index; graph query tree;
D O I
10.14569/ijacsa.2019.0100567
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the passage of time, the data is growing exponentially and the mostly endured areas are social media networks, media hosting applications, and servers. They have thousands of Tera-bytes of data and the efficient systems, however, they are as yet confronting issue to oversee such volume of information and its size is growing each day. Data systems retrieve information with less time of In-memory. Instead of each factor data systems are required to define good usage of cache and fast memory access with help of optimization. The proposed technique to solve this problem can be the optimal indexing technique with better and efficient utilization of Cache and having less overhead of DRAM with the goal that energy can also be saved for the high-end servers.
引用
收藏
页码:517 / 524
页数:8
相关论文
共 50 条
  • [1] In-Memory Big Data Management and Processing: A Survey
    Zhang, Hao
    Chen, Gang
    Ooi, Beng Chin
    Tan, Kian-Lee
    Zhang, Meihui
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (07) : 1920 - 1948
  • [2] Timo: In-Memory Temporal Query Processing for Big Temporal Data
    Zheng, Xiao
    Liu, Hou-kai
    Wei, Lin-na
    Wu, Xuan-gou
    Zhang, Zhen
    [J]. 2019 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2019, : 121 - 126
  • [3] Timo: In-memory temporal query processing for big temporal data
    Zheng, Xiao
    Liu, Houkai
    Wang, Xiujun
    Wu, Xuangou
    Yu, Feng
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (13):
  • [4] In-Memory Performance for Big Data
    Graefe, Goetz
    Volos, Haris
    Kimura, Hideaki
    Kuno, Harumi
    Tucek, Joseph
    Lillibridge, Mark
    Veitch, Alistair
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 8 (01): : 37 - 48
  • [5] An Energy Efficient In-Memory Computing Architecture Using Reconfigurable Magnetic Logic Circuits for Big Data Processing
    Gargari, Milad Ashtari
    Eslami, Nima
    Moaiyeri, Mohammad Hossein
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (12) : 1 - 10
  • [6] Massively Parallel Big Data Classification on a Programmable Processing In-Memory Architecture
    Kim, Yeseong
    Imani, Mohsen
    Gupta, Saransh
    Zhou, Minxuan
    Rosing, Tajana S.
    [J]. 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [7] DigitalPIM: Digital-based Processing In-Memory for Big Data Acceleration
    Imani, Mohsen
    Gupta, Saransh
    Kim, Yeseong
    Zhou, Minxuan
    Rosing, Tajana
    [J]. GLSVLSI '19 - PROCEEDINGS OF THE 2019 ON GREAT LAKES SYMPOSIUM ON VLSI, 2019, : 429 - 434
  • [8] Ultra-Efficient Processing In-Memory for Data Intensive Applications
    Imani, Mohsen
    Gupta, Saransh
    Rosing, Tajana
    [J]. PROCEEDINGS OF THE 2017 54TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2017,
  • [9] Efficient In-Memory Processing Using Spintronics
    Chowdhury, Zamshed
    Harms, Jonathan D.
    Khatamifard, S. Karen
    Zabihi, Masoud
    Lv, Yang
    Lyle, Andrew P.
    Sapatnekar, Sachin S.
    Karpuzcu, Ulya R.
    Wang, Jian-Ping
    [J]. IEEE COMPUTER ARCHITECTURE LETTERS, 2018, 17 (01) : 42 - 46
  • [10] Fast data series indexing for in-memory data
    Botao Peng
    Panagiota Fatourou
    Themis Palpanas
    [J]. The VLDB Journal, 2021, 30 : 1041 - 1067