Timo: In-memory temporal query processing for big temporal data

被引:0
|
作者
Zheng, Xiao [1 ,2 ,3 ]
Liu, Houkai [1 ,3 ]
Wang, Xiujun [1 ,2 ,3 ]
Wu, Xuangou [1 ,2 ,3 ]
Yu, Feng [4 ,5 ,6 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Anhui Univ Technol, Anhui Engn Lab Intelligent Applicat & Secur Ind I, Maanshan, Anhui, Peoples R China
[4] Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin, Peoples R China
[5] Guangxi Normal Univ, Sch Software, Guilin, Peoples R China
[6] Southeast Univ, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
big temporal data; Spark; temporal analysis; temporal index; temporal query;
D O I
10.1002/cpe.6758
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Today's internet applications generate massive temporal data anywhere and anytime. Although some disk-based temporal systems are currently available, they suffer from poor I/O performance, especially when applied in intelligent applications deployed in the cloud and edge environments. Therefore, how to process temporal operations with low latency and high throughput becomes a crucial problem for efficient data processing. This paper proposes Timo, a distributed in-memory temporal query and analytic model for big temporal data. Firstly, a space-efficient temporal index is proposed to support more efficiently query performance with less memory space than the state-of-art methods. Secondly, based on the temporal locality feature of temporal queries, Timo proposes a partitioner mechanism, which utilizes forward scan algorithm, to improve query throughput. Thirdly, some optimal strategies are proposed to improve the execution process of temporal query and analysis, which reduce intermediate result data size and improve the throughput much further. Lastly, we implement the Timo system on the Apache Spark platform, which extends Spark dataset API with temporal query and analysis API functions for users. Extensive experimental results show that the Timo system outperforms other Spark-based temporal systems in terms of both query latency and throughput.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Timo: In-Memory Temporal Query Processing for Big Temporal Data
    Zheng, Xiao
    Liu, Hou-kai
    Wei, Lin-na
    Wu, Xuan-gou
    Zhang, Zhen
    [J]. 2019 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2019, : 121 - 126
  • [2] Distributed In-Memory Analytics for Big Temporal Data
    Yao, Bin
    Zhang, Wei
    Wang, Zhi-Jie
    Chen, Zhongpu
    Shang, Shuo
    Zheng, Kai
    Guo, Minyi
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2018, PT I, 2018, 10827 : 549 - 565
  • [3] In-Memory Big Data Management and Processing: A Survey
    Zhang, Hao
    Chen, Gang
    Ooi, Beng Chin
    Tan, Kian-Lee
    Zhang, Meihui
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (07) : 1920 - 1948
  • [4] Fast and Efficient In-Memory Big Data Processing
    Malik, Babur Hayat
    Maryam, Maliha
    Khalid, Myda
    Khlaid, Javaria
    Rehman, Naj Am Ur
    Sajjad, Syeda Iqra
    Islam, Tanveer
    Butt, Umair Ahmed
    Raza, Ali
    Nasr, M. Saad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (05) : 517 - 524
  • [5] In-Memory Performance for Big Data
    Graefe, Goetz
    Volos, Haris
    Kimura, Hideaki
    Kuno, Harumi
    Tucek, Joseph
    Lillibridge, Mark
    Veitch, Alistair
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 8 (01): : 37 - 48
  • [6] Efficient In-Memory Point Cloud Query Processing
    Teuscher, Balthasar
    Geissendoerfer, Oliver
    Luo, Xuanshu
    Li, Hao
    Anders, Katharina
    Holst, Christoph
    Werner, Martin
    [J]. RECENT ADVANCES IN 3D GEOINFORMATION SCIENCE, 3D GEOINFO 2023, 2024, : 267 - 286
  • [7] Massively Parallel Big Data Classification on a Programmable Processing In-Memory Architecture
    Kim, Yeseong
    Imani, Mohsen
    Gupta, Saransh
    Zhou, Minxuan
    Rosing, Tajana S.
    [J]. 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [8] DigitalPIM: Digital-based Processing In-Memory for Big Data Acceleration
    Imani, Mohsen
    Gupta, Saransh
    Kim, Yeseong
    Zhou, Minxuan
    Rosing, Tajana
    [J]. GLSVLSI '19 - PROCEEDINGS OF THE 2019 ON GREAT LAKES SYMPOSIUM ON VLSI, 2019, : 429 - 434
  • [9] Energy Efficient In-Memory Hyperdimensional Encoding for Spatio-Temporal Signal Processing
    Karunaratne, Geethan
    Le Gallo, Manuel
    Hersche, Michael
    Cherubini, Giovanni
    Benini, Luca
    Sebastian, Abu
    Rahimi, Abbas
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (05) : 1725 - 1729
  • [10] Toward Efficient Processing of Spatio-temporal Workloads in a Distributed In-memory System
    Memarzia, Puya
    Patrou, Maria
    Alam, Md Mahbub
    Ray, Suprio
    Bhavsar, Virendra C.
    Kent, Kenneth B.
    [J]. 2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 118 - 127