The adhesion of dry particles in the nanometer to micrometer-size range

被引:106
|
作者
Rimai, DS [1 ]
Quesnel, DJ
Busnaina, AA
机构
[1] NexPress Solut LLC, Rochester, NY 14653 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[3] Clarkson Univ, Dept Mech Engn, Potsdam, NY 13699 USA
关键词
particle adhesion; dry particles; nanometer to micrometer size;
D O I
10.1016/S0927-7757(99)00439-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The physics of particle adhesion is a complex subject and depends on the interaction mechanisms and the mechanical properties of the contacting materials. These interactions, which tend to be caused by van der Waals and electrostatic interactions, generate stresses that, in turn, result in deformations of the contacting materials. Most of today's understanding of particle adhesion is based on theories that assume that the adhesion-induced strains are small. Examples of such theories include those proposed by Derjaguin et al. for small particles and high modulus materials and Johnson et al. (K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Sec. London A324 (1971) 301) for more compliant materials and larger particles. However, for small particles, the strains can be quite large, resulting in yielding and plastic deformations. In some instances, the entire particle can become engulfed by the substrate. This paper discusses the nature of the deformations, as are presently known, and extrapolates today's understanding of particle adhesion, which is based on the micrometer-size scale, to the regime of nanometer-size particles. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 50 条
  • [31] Molecular beam growth of micrometer-size graphene on mica
    Lippert, Gunther
    Dabrowski, Jarek
    Yamamoto, Yuji
    Herziger, Felix
    Maultzsch, Janina
    Lemme, Max C.
    Mehr, Wolfgang
    Lupina, Grzegorz
    CARBON, 2013, 52 : 40 - 48
  • [32] Micrometer-Size Vesicle Formation Triggered by UV Light
    Shima, Tatsuya
    Muraoka, Takahiro
    Hamada, Tsutomu
    Morita, Masamune
    Takagi, Masahiro
    Fukuoka, Hajime
    Inoue, Yuichi
    Sagawa, Takashi
    Ishijima, Akihiko
    Omata, Yuki
    Yamashita, Takashi
    Kinbara, Kazushi
    LANGMUIR, 2014, 30 (25) : 7289 - 7295
  • [33] The interaction between micrometer-size particles and flat substrates: A quantitative study of jump-to-contact
    Gady, B
    Schleef, D
    Reifenberger, R
    Rimai, DS
    JOURNAL OF ADHESION, 1998, 67 (1-4): : 291 - 305
  • [34] Induction charging and electrostatic classification of micrometer-size particles for investigating the electrobiological properties of airborne microorganisms
    Mainelis, G
    Willeke, K
    Baron, P
    Grinshpun, SA
    Reponen, T
    AEROSOL SCIENCE AND TECHNOLOGY, 2002, 36 (04) : 479 - 491
  • [35] MULTIORDER STOKES EMISSION FROM MICROMETER-SIZE DROPLETS
    QIAN, SX
    CHANG, RK
    PHYSICAL REVIEW LETTERS, 1986, 56 (09) : 926 - 929
  • [36] Adhesion hysteresis and friction at nanometer and micrometer lengths
    Szoszkiewicz, R
    Bhushan, B
    Huey, BD
    Kulik, AJ
    Gremaud, G
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (01)
  • [37] Adhesion hysteresis and friction at nanometer and micrometer lengths
    Szoszkiewicz, Robert
    Bhushan, Bharat
    Huey, Bryan D.
    Kulik, Andrzej J.
    Gremaud, Gerard
    Journal of Applied Physics, 2006, 99 (01): : 1 - 7
  • [38] Printing of Micrometer-Size Features on Complex Substrates for System Integration
    Wiatrowska, Aneta
    Fiaczyk, Karolina
    Kowalczewski, Piotr
    Lysien, Mateusz
    Witczak, Lukasz
    Gadzalinska, Jolanta
    Gradzka-Kurzaj, Iwona
    Schneider, Ludovic
    Kosior, Lukasz
    Granek, Filip
    2022 IEEE 9TH ELECTRONICS SYSTEM-INTEGRATION TECHNOLOGY CONFERENCE, ESTC, 2022, : 273 - 276
  • [39] Volumetric reconstruction of Brownian motion of a micrometer-size bead in water
    Bae, Yoon-Sung
    Song, Jong-In
    Kim, Dug Young
    OPTICS COMMUNICATIONS, 2013, 309 : 291 - 297
  • [40] A fiberized highly birefringent glass micrometer-size ridge waveguide
    Shi, Jindan
    Feng, Xian
    Horak, Peter
    Poletti, Francesco
    OPTICAL FIBER TECHNOLOGY, 2015, 23 : 137 - 144