Enriching 28Si beyond 99.9998% for semiconductor quantum computing

被引:17
|
作者
Dwyer, K. J. [1 ,2 ]
Pomeroy, J. M. [2 ]
Simons, D. S. [2 ]
Steffens, K. L. [2 ]
Lau, J. W. [2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20740 USA
[2] NIST, Gaithersburg, MD 20899 USA
关键词
quantum computing; enriched silicon; ion beam deposition; ATOMIC-SCALE; SPIN QUBITS; SILICON; GERMANIUM; KILOGRAM; READOUT; STORAGE; SILANE; GROWTH;
D O I
10.1088/0022-3727/47/34/345105
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using a laboratory-scale apparatus, we enrich Si-28 and produce material with 40 times less residual Si-29 than previously reported. Starting from natural abundance silane gas, we offer an alternative to industrial gas centrifuges for providing materials critical for long spin coherence times in quantum information devices. Using a mass spectrometry approach, silicon ions are produced from commercial silane gas and the isotopes are separated in a magnetic sector analyzer before deposition onto a Si(1 0 0) substrate. Isotope fractions for Si-29 and Si-30 of < 1 x 10(-6) are found in the deposited films using secondary ion mass spectrometry. Additional assessments of the deposited films are also presented as we work to develop substrates and source material to support the growing silicon quantum computing community. Finally, we demonstrate modulation of the Si-29 concentration in a deposited film as a precursor to dual enrichment of heterostructures and compound materials such as (SiGe)-Si-28-Ge-74.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] STUDY OF 28SI LEVELS USING 29SI(3HE ALPHA)28SI REACTION
    FOU, CM
    ZURMUHLE, RW
    SWENSON, LW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (01): : 86 - &
  • [22] GIANT RESONANCE ELECTROEXCITATION IN 28SI
    GULKAROV, IS
    AFANASYEV, NG
    SAVITSKY, GA
    KHVASTUNOV, VM
    SHEVCHENKO, NG
    PHYSICS LETTERS B, 1968, B 27 (07) : 417 - +
  • [23] Candidate superdeformed band in 28Si
    Jenkins, D. G.
    Lister, C. J.
    Carpenter, M. P.
    Chowdury, P.
    Hammond, N. J.
    Janssens, R. V. F.
    Khoo, T. L.
    Lauritsen, T.
    Seweryniak, D.
    Davinson, T.
    Woods, P. J.
    Jokinen, A.
    Penttila, H.
    Haas, F.
    Courtin, S.
    PHYSICAL REVIEW C, 2012, 86 (06):
  • [24] COULOMB EXCITATION OF 28SI PROJECTILES
    HAUSSER, O
    ALEXANDER, TK
    PELTE, D
    HOOTON, BW
    EVANS, HC
    PHYSICAL REVIEW LETTERS, 1969, 23 (06) : 320 - +
  • [25] Spatial noise correlations beyond nearest neighbors in 28Si/Si-Ge spin qubits
    Rojas-Arias, J. S.
    Noiri, A.
    Stano, P.
    Nakajima, T.
    Yoneda, J.
    Takeda, K.
    Kobayashi, T.
    Sammak, A.
    Scappucci, G.
    Loss, D.
    Tarucha, S.
    PHYSICAL REVIEW APPLIED, 2023, 20 (05)
  • [26] Toward 28Si through trichlorosilane
    Babichev, AP
    Zhernova, ZY
    Kurochkin, AV
    Mishachev, AA
    Popov, GE
    Rudnev, AI
    Tikhomirov, AV
    INORGANIC MATERIALS, 2002, 38 (05) : 425 - 426
  • [27] Cluster structures and superdeformation in 28Si
    Taniguchi, Yasutaka
    En'yo, Yoshiko Kanada
    Kimura, Masaaki
    PHYSICAL REVIEW C, 2009, 80 (04):
  • [28] PROTON SPIN-FLIP IN REACTION 28SI(P P')28SI] (1.78 AT 40 MEV
    GINAVEN, RO
    GROSS, EE
    MALANIFY, JJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (01): : 116 - &
  • [29] A 2D quantum dot array in planar 28Si/SiGe
    Unseld, F. K.
    Meyer, M.
    Madzik, M. T.
    Borsoi, F.
    de Snoo, S. L.
    Amitonov, S. V.
    Sammak, A.
    Scappucci, G.
    Veldhorst, M.
    Vandersypen, L. M. K.
    APPLIED PHYSICS LETTERS, 2023, 123 (08)
  • [30] A compact, ultra-high vacuum ion source for isotopically enriching and depositing 28Si thin films
    Tang, K.
    Kim, H. S.
    Ramanayaka, A. N. R.
    Simons, D. S.
    Pomeroy, J. M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (08):