Conditional Cramer-Rao Lower Bounds for DOA Estimation and Array Calibration

被引:20
|
作者
Liu, Zhang-Meng [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Array calibration; Cramer-Rao lower bound (CRLB); direction-of-arrival (DOA) estimation; MAXIMUM-LIKELIHOOD APPROACH; OF-ARRIVAL ESTIMATION; SENSOR GAIN; PHASE UNCERTAINTIES; LINEAR ARRAYS; PERFORMANCE; UNIFORM;
D O I
10.1109/LSP.2013.2281972
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter aims at deriving the Cramer-Rao lower bounds (CRLB) of the direction-of-arrival (DOA) estimation and array calibration precisions in the case of determined and unknown signals based on the assumptions of small array perturbations. The analysis begins with a comprehensive perturbed array output formulation, and it is effective for various kinds of perturbations, such as mutual coupling, gain/phase uncertainty and sensor location error. The CRLB of the DOA and array perturbation parameters are well separated from each other in the letter, which facilitates their usage in performance evaluation of the self-calibration methods. However, the CRLB are finally given in the form of the inverse of the corresponding Fisher information matrices (FIM) as the inversion process can hardly be implemented mathematically. Simulation results are provided to compare the obtained conditional CRLB with the parameter estimation precision of the maximum likelihood estimators (MLE) and the unconditional CRLB.
引用
收藏
页码:361 / 364
页数:4
相关论文
共 50 条
  • [1] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 1 - 14
  • [2] Cramer-Rao Lower Bound for DOA Estimation with an Array of Directional Microphones in Reverberant Environments
    Chen, Weiguang
    Xue, Cheng
    Zhong, Xionghu
    [J]. INTERSPEECH 2021, 2021, : 2172 - 2176
  • [3] New Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zheng, Yujiao
    Ozdemir, Onur
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5549 - 5556
  • [4] Cramer-Rao Lower Bounds for UWB Localization with Antenna Array
    Zhang, Qi
    Cao, Wei
    Nallanathan, A.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2010,
  • [5] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Recursive Filtering
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1528 - 1535
  • [6] Cramer-Rao Lower Bounds for Hybrid Distance Estimation Schemes
    Sand, S.
    Wang, W.
    Dammann, A.
    [J]. 2012 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2012,
  • [7] Achieving Cramer-Rao Lower Bounds in Sensor Network Estimation
    Djurovic, Igor
    [J]. IEEE SENSORS LETTERS, 2018, 2 (01)
  • [8] Cramer-Rao lower bounds for QAM phase and frequency estimation
    Rice, F
    Cowley, B
    Moran, B
    Rice, M
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (09) : 1582 - 1591
  • [9] Posterior Cramer-Rao Lower Bounds for dual Kalman estimation
    Saatci, Esra
    Akan, Aydin
    [J]. DIGITAL SIGNAL PROCESSING, 2012, 22 (01) : 47 - 53
  • [10] Cramer-Rao Lower Bounds for Monopulse Calibration Using Clutter Returns
    Prasanth, R. K.
    Titi, G. W.
    [J]. 2010 IEEE RADAR CONFERENCE, 2010, : 1071 - 1078