Neuronal Machinery of Sleep Homeostasis in Drosophila

被引:159
|
作者
Donlea, Jeffrey M. [1 ]
Pimentel, Diogo [1 ]
Miesenboeck, Gero [1 ]
机构
[1] Univ Oxford, Ctr Neural Circuits & Behav, Oxford OX1 3SR, England
基金
英国医学研究理事会; 美国国家卫生研究院; 英国惠康基金;
关键词
CIRCADIAN BEHAVIORAL RHYTHMS; MUSHROOM BODIES; SUPRACHIASMATIC NUCLEUS; REGULATES SLEEP; LOCOMOTOR-ACTIVITY; REDUCED SLEEP; CLOCK; PERIOD; MEMORY; GENE;
D O I
10.1016/j.neuron.2013.12.013
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c.
引用
收藏
页码:860 / 872
页数:13
相关论文
共 50 条
  • [41] The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia
    Nils Otto
    Zvonimir Marelja
    Andreas Schoofs
    Holger Kranenburg
    Jonas Bittern
    Kerem Yildirim
    Dimitri Berh
    Maria Bethke
    Silke Thomas
    Sandra Rode
    Benjamin Risse
    Xiaoyi Jiang
    Michael Pankratz
    Silke Leimkühler
    Christian Klämbt
    Nature Communications, 9
  • [42] The Evolutionary Assembly of Neuronal Machinery
    Arendt, Detlev
    CURRENT BIOLOGY, 2020, 30 (10) : R603 - R616
  • [43] Neuronal Ubiquitin Homeostasis
    Hallengren, Jada
    Chen, Ping-Chung
    Wilson, Scott M.
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2013, 67 (01) : 67 - 73
  • [44] NEURONAL CALCIUM HOMEOSTASIS
    MCBURNEY, RN
    NEERING, IR
    TRENDS IN NEUROSCIENCES, 1987, 10 (04) : 164 - 169
  • [45] Neuronal Ubiquitin Homeostasis
    Jada Hallengren
    Ping-Chung Chen
    Scott M. Wilson
    Cell Biochemistry and Biophysics, 2013, 67 : 67 - 73
  • [46] Pan-Neuronal Knockdown of Calcineurin Reduces Sleep in the Fruit Fly, Drosophila melanogaster
    Tomita, Jun
    Mitsuyoshi, Madoka
    Ueno, Taro
    Aso, Yoshinori
    Tanimoto, Hiromu
    Nakai, Yasuhiro
    Aigaki, Toshiro
    Kume, Shoen
    Kume, Kazuhiko
    JOURNAL OF NEUROSCIENCE, 2011, 31 (37): : 13137 - 13146
  • [47] Evaluation of Ligand-Inducible Expression Systems for Conditional Neuronal Manipulations of Sleep in Drosophila
    Li, Qiuling
    Stavropoulos, Nicholas
    G3-GENES GENOMES GENETICS, 2016, 6 (10): : 3351 - 3359
  • [48] Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep
    Tabuchi, Masashi
    NEUROSCIENCE RESEARCH, 2024, 198 : 1 - 7
  • [49] Proteomic Profiling in Drosophila Reveals Potential Dube3a Regulation of the Actin Cytoskeleton and Neuronal Homeostasis
    Jensen, Laura
    Farook, M. Febin
    Reiter, Lawrence T.
    PLOS ONE, 2013, 8 (04):
  • [50] Kinase signaling in distinct neuronal populations in the mouse brain controls sleep homeostasis and the circadian clock
    Fukada, Yoshitaka
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (15)