The multivariate split normal distribution and asymmetric principal components analysis

被引:20
|
作者
Villani, M
Larsson, R
机构
[1] Stockholm Univ, Sveriges Riksbank, Div Res, SE-10337 Stockholm, Sweden
[2] Stockholm Univ, Dept Stat, SE-10337 Stockholm, Sweden
[3] Uppsala Univ, Dept Informat Sci, Uppsala, Sweden
关键词
Bayesian inference; estimation; maximum likelihood; multivariate analysis; skewness; statistical distribution;
D O I
10.1080/03610920600672252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multivariate split normal distribution extends the usual multivariate normal distribution by a set of parameters which allows for skewness in the form of contraction/dilation along a subset of the principal axes. This article derives some properties for this distribution, including its moment generating function, multivariate skewness, and kurtosis, and discusses its role as a population model for asymmetric principal components analysis. Maximum likelihood estimators and a complete Bayesian analysis, including inference on the number of skewed dimensions and their directions, are presented.
引用
收藏
页码:1123 / 1140
页数:18
相关论文
共 50 条
  • [31] NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL COMPONENTS ANALYSIS
    KSHIRSAG.AM
    BIOMETRIKA, 1966, 53 : 590 - &
  • [32] PRINCIPAL COMPONENTS ANALYSIS ON THE SPECTRAL BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION
    Ferrero, A.
    Campos, J.
    Rabal, A. M.
    Pons, A.
    Fontecha, J. L.
    Corrons, A.
    27TH SESSION OF THE CIE, VOL. 1, PTS 1 AND 2, 2011, : 807 - 813
  • [33] Study on Inversion of Temperature Distribution Based on Principal Components Analysis
    Hu Xin-yue
    Gao Ming-xi
    Ren Yu
    Tan Jian-yao
    Li Wei
    Jin Kun
    Shi San-zhi
    Cai Hong-xing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (10) : 2789 - 2793
  • [34] Asymmetric multivariate normal mixture GARCH
    Haas, Markus
    Mittnik, Stefan
    Paolella, Marc S.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 2129 - 2154
  • [35] ANATOMICAL DISTRIBUTION OF SUBCUTANEOUS FAT AND ITS DESCRIPTION BY MULTIVARIATE METHODS - HOW VALID ARE PRINCIPAL COMPONENTS
    MUELLER, WH
    WOHLLEB, JC
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 1981, 54 (01) : 25 - 35
  • [36] EXPLORING MULTIVARIATE DATA USING THE MINOR PRINCIPAL COMPONENTS
    HAWKINS, DM
    FATTI, LP
    STATISTICIAN, 1984, 33 (04): : 325 - 338
  • [37] Multivariate histogram shaping and statistically independent principal components
    Kern, JP
    Tyo, JS
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 263 - 274
  • [38] Choosing principal components for multivariate statistical process control
    Runger, GC
    Alt, FB
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (05) : 909 - 922
  • [39] Prediction of multivariate responses with a selected number of principal components
    Koch, Inge
    Naito, Kanta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (07) : 1791 - 1807
  • [40] DETECTION OF ERRORS IN MULTIVARIATE DATA USING PRINCIPAL COMPONENTS
    HAWKINS, DM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (346) : 340 - 344