Incremental Tensor Principal Component Analysis for Handwritten Digit Recognition

被引:3
|
作者
Liu, Chang [1 ,2 ]
Yan, Tao [1 ,2 ]
Zhao, WeiDong [1 ,2 ]
Liu, YongHong [1 ,2 ]
Li, Dan [1 ,2 ]
Lin, Feng [3 ]
Zhou, JiLiu [3 ]
机构
[1] Chengdu Univ, Coll Informat Sci & Technol, Chengdu 610106, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu 610106, Peoples R China
[3] Sichuan Univ, Sch Comp Sci, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
DISCRIMINANT-ANALYSIS; FACE REPRESENTATION; 2-DIMENSIONAL PCA; DIMENSIONALITY; PROJECTIONS;
D O I
10.1155/2014/819758
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To overcome the shortcomings of traditional dimensionality reduction algorithms, incremental tensor principal component analysis (ITPCA) based on updated-SVD technique algorithm is proposed in this paper. This paper proves the relationship between PCA, 2DPCA, MPCA, and the graph embedding framework theoretically and derives the incremental learning procedure to add single sample and multiple samples in detail. The experiments on handwritten digit recognition have demonstrated that ITPCA has achieved better recognition performance than that of vector-based principal component analysis (PCA), incremental principal component analysis (IPCA), and multilinear principal component analysis (MPCA) algorithms. At the same time, ITPCA also has lower time and space complexity.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Handwritten digit recognition with nonlinear Fisher Discriminant Analysis
    Berkes, P
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 285 - 287
  • [22] Handwritten Arabic Text Recognition using Principal Component Analysis and Support Vector Machines
    Al-Saqqar, Faisal
    Al-Diabat, Mofleh
    Aloun, Mesbah
    AL-Shatnawi, Atallah M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 195 - 200
  • [23] Handwritten arabic text recognition using principal component analysis and support vector machines
    Al-Saqqar F.
    Al-Diabat M.
    Aloun M.
    Al-Shatnawi A.M.
    Intl. J. Adv. Comput. Sci. Appl., 2019, 12 (195-200): : 195 - 200
  • [24] Handwritten Digit Recognition: Hyperparameters-Based Analysis
    Albahli, Saleh
    Alhassan, Fatimah
    Albattah, Waleed
    Khan, Rehan Ullah
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [25] Incremental robust principal component analysis for face recognition using ridge regression
    Nakouri H.
    Limam M.
    Nakouri, Haïfa (nakouri.hayfa@gmail.com), 2017, Inderscience Publishers (09) : 186 - 204
  • [26] Adaptive face recognition system using fast Incremental Principal Component Analysis
    Ozawa, Seiichi
    Pang, Shaoning
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING, PART II, 2008, 4985 : 396 - +
  • [27] An Incremental Two-dimensional Principal Component Analysis for Image Compression and Recognition
    Nakouri, Haifa
    Limam, Mohamed
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 725 - 731
  • [28] Rosenblatt Perceptrons for handwritten digit recognition
    Ernst, K
    Tatyana, B
    Lora, K
    Vladimir, L
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1516 - 1520
  • [29] Handwritten English Character and Digit Recognition
    Al-Mahmud
    Tanvin, Asnuva
    Rahman, Sazia
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [30] Ranked Dropout for Handwritten Digit Recognition
    Tang, Yue
    Liang, Zhuonan
    Shi, Huaze
    Fu, Peng
    Sun, Quansen
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720