An ODE method of solving nonlinear programming

被引:5
|
作者
Zhou, ZF [1 ]
Shi, Y [1 ]
机构
[1] UNIV NEBRASKA,DEPT INFORMAT SYST & QUANTITAT ANAL,OMAHA,NE 68182
关键词
constrained optimization; ODE; local optimal points;
D O I
10.1016/S0898-1221(97)00101-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a new method to solve general constrained optimization problem. The problem of finding the local optimal points of a nonlinear programming problem with equality and inequality constraints is considered by solving the ODE (i.e., ordinary differential equation) with an appropriate numerical procedure. Moreover, the rate of convergence to optimal points is quadratic. Some numerical result is given to show the efficiency of the proposed method.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [31] A modified objective function method for solving nonlinear multiobjective fractional programming problems
    Antczak, Tadeusz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 971 - 989
  • [32] Steepest descent method for solving zero-one nonlinear programming problems
    Anjidani, M.
    Effati, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) : 197 - 202
  • [33] Method for solving nonlinear goal programming tasks with interval coefficients using GA
    Taguchi, T
    Yokota, T
    Gen, M
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2003, 86 (04): : 55 - 65
  • [34] METHOD FOR SOLVING PARTIALLY DISCRETE NONLINEAR PROGRAMMING PROBLEMS WITHOUT CONVEXITY HYPOTHESIS
    ABADIE, J
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1971, 5 (NV1): : 23 - 38
  • [35] Dual Schur Method in Time for Nonlinear ODE
    Linel, P.
    Tromeur-Dervout, D.
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 577 - 585
  • [36] A NONLINEAR PROGRAMMING METHOD FOR DYNAMIC PROGRAMMING
    Cai, Yongyang
    Judd, Kenneth L.
    Lontzek, Thomas S.
    Michelangeli, Valentina
    Su, Che-Lin
    [J]. MACROECONOMIC DYNAMICS, 2017, 21 (02) : 336 - 361
  • [37] The Hybrid Genetic Algorithm for solving nonlinear programming
    Wang, HG
    Zeng, JC
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT PROCESSING SYSTEMS, VOLS 1 & 2, 1997, : 589 - 591
  • [38] A robust algorithm for solving nonlinear programming problems
    Li, Y
    Kang, LS
    De Garis, H
    Kang, Z
    Liu, P
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (05) : 523 - 536
  • [39] A neural network for solving nonlinear programming problems
    Chen, KZ
    Leung, Y
    Leung, KS
    Gao, XB
    [J]. NEURAL COMPUTING & APPLICATIONS, 2002, 11 (02): : 103 - 111
  • [40] A Neural Network for Solving Nonlinear Programming Problems
    K.-z. Chen
    Y. Leung
    K. S. Leung
    X.-b. Gao
    [J]. Neural Computing & Applications, 2002, 11 : 103 - 111