Genomics pipelines and data integration: challenges and opportunities in the research setting

被引:47
|
作者
Davis-Turak, Jeremy [1 ]
Courtney, Sean M. [2 ,3 ]
Hazard, E. Starr [2 ,4 ]
Glen, W. Bailey [2 ,3 ]
da Silveira, Willian A. [2 ,3 ]
Wesselman, Timothy [1 ]
Harbin, Larry P. [5 ]
Wolf, Bethany J. [5 ]
Chung, Dongjun [5 ]
Hardiman, Gary [2 ,5 ,6 ]
机构
[1] OnRamp Bioinformat Inc, San Diego, CA USA
[2] Med Univ South Carolina, MUSC Bioinformat, Ctr Genom Med, Charleston, SC 29425 USA
[3] Med Univ South Carolina, Dept Pathol & Lab Med, Charleston, SC USA
[4] Med Univ South Carolina, Lib Sci & Informat, Charleston, SC USA
[5] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC 29425 USA
[6] Med Univ South Carolina, Dept Med, Charleston, SC 29425 USA
基金
美国国家卫生研究院;
关键词
High throughput sequencing; bioinformatics pipelines; bioinformatics best practices; RNAseq; ExomeSeq; variant calling; reproducible computational research; genomic data management; analysis provenance; DIFFERENTIAL EXPRESSION ANALYSIS; RNA-SEQ; COMPREHENSIVE ANALYSIS; READ ALIGNMENT; CANCER; DISCOVERY; FRAMEWORK; GENE; TOOL; LANDSCAPE;
D O I
10.1080/14737159.2017.1282822
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Introduction: The emergence and mass utilization of high-throughput (HT) technologies, including sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids), has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and phenotype on a massive scale. These new technologies have brought rapid advances in our understanding of cell biology, evolutionary history, microbial environments, and are increasingly providing new insights and applications towards clinical care and personalized medicine.Areas covered: The very success of this industry also translates into daunting big data challenges for researchers and institutions that extend beyond the traditional academic focus of algorithms and tools. The main obstacles revolve around analysis provenance, data management of massive datasets, ease of use of software, interpretability and reproducibility of results.Expert commentary: The authors review the challenges associated with implementing bioinformatics best practices in a large-scale setting, and highlight the opportunity for establishing bioinformatics pipelines that incorporate data tracking and auditing, enabling greater consistency and reproducibility for basic research, translational or clinical settings.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 50 条
  • [31] Bioinformatics and functional genomics: Challenges and opportunities
    Hatzimanikatis, V
    AICHE JOURNAL, 2000, 46 (12) : 2339 - 2343
  • [32] Genomics data integration
    Lin Tang
    Nature Methods, 2023, 20 : 34 - 34
  • [33] Genomics data integration
    Tang, Lin
    NATURE METHODS, 2023, 20 (01) : 34 - 34
  • [34] Challenges and opportunities for data integration to improve estimation of migratory connectivity
    Hostetler, Jeffrey A.
    Cohen, Emily B.
    Bossu, Christen M.
    Scarpignato, Amy L.
    Ruegg, Kristen
    Contina, Andrea
    Rushing, Clark S.
    Hallworth, Michael T.
    METHODS IN ECOLOGY AND EVOLUTION, 2025,
  • [35] Current and future use of genomics data in toxicology: Opportunities and challenges for regulatory applications
    Goetz, Amber K.
    Singh, Bhanu P.
    Battalora, Michael
    Breier, Joseph M.
    Bailey, Jason P.
    Chukwudebe, Amechi C.
    Janus, Erik R.
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2011, 61 (02) : 141 - 153
  • [36] Description of research data in laboratory notebooks: Challenges and opportunities
    Nishida E.
    Ishita E.
    Watanabe Y.
    Tomiura Y.
    Proceedings of the Association for Information Science and Technology, 2020, 57 (01)
  • [37] Privacy challenges and research opportunities for genomic data sharing
    Bonomi, Luca
    Huang, Yingxiang
    Ohno-Machado, Lucila
    NATURE GENETICS, 2020, 52 (07) : 646 - 654
  • [38] Open Data Revolution in Clinical Research: Opportunities and Challenges
    Shahin, Mohamed H.
    Bhattacharya, Sanchita
    Silva, Diego
    Kim, Sarah
    Burton, Jackson
    Podichetty, Jagdeep
    Romero, Klaus
    Conrado, Daniela J.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2020, 13 (04): : 665 - 674
  • [39] Institutional Repositories and Research Data Management:challenges and opportunities
    James Evans
    Bev Acreman
    中国科技期刊研究, 2015, (01) : 8 - 10
  • [40] 'Big Data' in animal health research - opportunities and challenges
    MacInnes, Janet I.
    ANIMAL HEALTH RESEARCH REVIEWS, 2020, 21 (01) : 1 - 2