Pattern formation in a slowly flattening spherical cap: delayed bifurcation

被引:3
|
作者
Charette, Laurent [1 ,2 ]
Macdonald, Colin B. [1 ,2 ]
Nagata, Wayne [1 ,2 ]
机构
[1] Univ British Columbia, Inst Appl Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Brusselator; closest point method; centre manifold reduction; non-autonomous differential equation; delayed bifurcation; pitchfork bifurcation; DIFFUSION; DYNAMICS; MODEL;
D O I
10.1093/imamat/hxaa016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article describes a reduction of a non-autonomous Brusselator reaction-diffusion system of partial differential equations on a spherical cap with time-dependent curvature using the method of centre manifold reduction. Parameter values are chosen such that the change in curvature would cross critical values which would change the stability of the patternless solution in the constant domain case. The evolving domain functions and quasi-patternless solutions are derived as well as a method to obtain this non-autonomous normal form. The coefficients of such a normal form are computed and the reduction solutions are compared to numerical solutions.
引用
收藏
页码:513 / 541
页数:29
相关论文
共 50 条
  • [31] A Turing-Hopf Bifurcation Scenario for Pattern Formation on Growing Domains
    Castillo, Jorge A.
    Sanchez-Garduno, Faustino
    Padilla, Pablo
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (07) : 1410 - 1449
  • [32] Pattern formation, localized and running pulsation on active spherical membranes
    Ghosh, Subhadip
    Gutti, Sashideep
    Chaudhuri, Debasish
    [J]. SOFT MATTER, 2021, 17 (47) : 10614 - 10627
  • [33] Mechano-Chemical Pattern Formation in Spherical Cell Sheets
    Hoehn, Stephanie S.
    Mercker, Moritz
    [J]. BIOPHYSICAL JOURNAL, 2021, 120 (03) : 102A - 102A
  • [34] Pattern formation by curvature-inducing proteins on spherical membranes
    Agudo-Canalejo, Jaime
    Golestanian, Ramin
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [35] Pattern formation in a surface chemical reaction with global delayed feedback
    Bertram, M
    Mikhailov, AS
    [J]. PHYSICAL REVIEW E, 2001, 63 (06):
  • [36] Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model
    Delphine Draelants
    Jan Broeckhove
    Gerrit T. S. Beemster
    Wim Vanroose
    [J]. Journal of Mathematical Biology, 2013, 67 : 1279 - 1305
  • [37] A MECHANICAL MODEL FOR BIOLOGICAL PATTERN-FORMATION - A NONLINEAR BIFURCATION-ANALYSIS
    MAINI, PK
    MURRAY, JD
    OSTER, GF
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1151 : 253 - 269
  • [38] Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model
    Draelants, Delphine
    Broeckhove, Jan
    Beemster, Gerrit T. S.
    Vanroose, Wim
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (05) : 1279 - 1305
  • [39] The analysis of spatial pattern formation in reaction-diffusion system near bifurcation
    Kurushina, Svetlana E.
    [J]. Computer Optics, 2010, 34 (03) : 340 - 349
  • [40] Dynamical pattern formation in two-dimensional fluids and Landau pole bifurcation
    Ogawa, Shun
    Barre, Julien
    Morita, Hidetoshi
    Yamaguchi, Yoshiyuki Y.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):