Utilizing Rooftop Renewable Energy Potential for Electric Vehicle Charging Infrastructure Using Multi-Energy Hub Approach

被引:4
|
作者
Taqvi, Syed Taha [1 ,2 ]
Almansoori, Ali [3 ]
Maroufmashat, Azadeh [1 ]
Elkamel, Ali [1 ,3 ]
机构
[1] Univ Waterloo, Chem Engn Dept, Waterloo, ON N2L 3G1, Canada
[2] ABen Hub Inc, Kitchener, ON N2E 0E1, Canada
[3] Khalifa Univ Sci Technol & Res KUSTAR, Dept Chem Engn, POB 2533, Abu Dhabi, U Arab Emirates
关键词
renewable energy; rooftop; energy hub; multi-period optimization; energy planning; electric vehicle; charging infrastructure;
D O I
10.3390/en15249572
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electric vehicles (EV) have the potential to significantly reduce carbon emissions. Yet, the current electric vehicle charging infrastructure utilizes electricity generated from non-renewable sources. In this study, the rooftop area of structures is analyzed to assess electricity that can be generated through solar- and wind-based technologies. Consequently, planning an electric vehicle charging infrastructure that is powered through 'clean' energy sources is presented. We developed an optimal modeling framework for the consideration of Renewable Energy Technologies (RET) along with EV infrastructure. After examining the level of technology, a MATLAB image segmentation technique was used to assess the available rooftop area. In this study, two competitive objectives including the economic cost of the system and CO2 emissions are considered. Three scenarios are examined to assess the potential of RET to meet the EV demand along with the Abu Dhabi city one while considering the life-cycle emission of RET and EV systems. When meeting only EV demand through Renewable Energy Technologies (RET), about 187 ktonnes CO2 was reduced annually. On the other hand, the best economic option was still to utilize grid-connected electricity, yielding about 2.24 Mt CO2 annually. In the scenario of meeting both 10% EV demand and all Abu Dhabi city electricity demand using RE, wind-based technology is only able to meet around 3%. Analysis carried out by studying EV penetration demonstrated the preference of using level 2 AC home chargers compared to other ones. When the EV penetration exceeds 25%, preference was observed for level 2 (AC public 3 phi) chargers.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Scheduling of Electric Vehicle Charging Request and Power Allocation at Charging Stations with Renewable Energy
    Li Jingwei
    Yang Bo
    Xu Yang
    Chen Cailian
    Guan Xinping
    Zhang Weidong
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7066 - 7071
  • [32] Energy Management System for Hybrid Renewable Energy-Based Electric Vehicle Charging Station
    Karmaker, Ashish Kumar
    Hossain, Md. Alamgir
    Pota, Hemanshu Roy
    Onen, Ahmet
    Jung, Jaesung
    IEEE ACCESS, 2023, 11 : 27793 - 27805
  • [33] The impact of electric vehicle penetration and charging patterns on the management of energy hub - A multi-agent system simulation
    Lin, Haiyang
    Liu, Yiling
    Sun, Qie
    Xiong, Rui
    Li, Hailong
    Wennersten, Ronald
    APPLIED ENERGY, 2018, 230 : 189 - 206
  • [34] The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids
    Haupt, Leon
    Schoepf, Michael
    Wederhake, Lars
    Weibelzahl, Martin
    APPLIED ENERGY, 2020, 273
  • [35] Optimization models for placement of an energy-aware electric vehicle charging infrastructure
    Yi, Zonggen
    Bauer, Peter H.
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2016, 91 : 227 - 244
  • [36] Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply
    Walraven, Erwin
    Spaan, Matthijs T. J.
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 904 - 912
  • [37] Optimal Charging Scheduling for Electric Vehicle in Parking Lot with Renewable Energy System
    Chen, Chao-Rong
    Chen, Yong-Sheng
    Lin, Tzu-Chiao
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1684 - 1688
  • [38] Distribution System Operation with Electric Vehicle Charging Schedules and Renewable Energy Resources
    Osorio, Gerardo J.
    Shafie-khah, Miadreza
    Coimbra, Pedro D. L.
    Lotfi, Mohamed
    Catalao, Joao P. S.
    ENERGIES, 2018, 11 (11)
  • [39] Electric Vehicle Smart Charging to Maximize Renewable Energy Usage in a Single Residence
    Sastry, Kartik, V
    Fuller, Thomas F.
    Grijalva, Santiago
    Taylor, David G.
    Leamy, Michael J.
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [40] An Energy Management Approach for Electric Vehicle Fast Charging Station
    Huo, Yuchong
    Bouffard, Francois
    Joos, Geza
    2017 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2017, : 89 - 94