Semi-parametric order-based generalized multivariate regression

被引:0
|
作者
Kharratzadeh, Milad [1 ]
Coates, Mark [1 ]
机构
[1] McGill Univ, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coefficient of agreement; Generalized multivariate regression; Kendall-type measure; Rank correlation; Semi-parametric regression; DIMENSION REDUCTION; U-PROCESSES; RANK; SELECTION;
D O I
10.1016/j.jmva.2017.01.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a generalized multivariate regression problem where the responses are some functions of linear transformations of predictors. We assume that these functions are strictly monotonic, but their form and parameters are unknown. We propose a semi-parametric estimator based on the ordering of the responses which is invariant to the functional form of the transformation function as long as it is strictly monotonic. We prove that our estimator, which maximizes the rank similarity between responses and linear transformations of predictors, is a consistent estimator of the true coefficient matrix. We also identify the rate of convergence and show that the squared estimation error decays with a rate of o(1/root n). We then propose a greedy algorithm to maximize the highly non smooth objective function of our model and examine its performance through extensive simulations. Finally, we compare our algorithm with traditional multivariate regression algorithms over synthetic and real data. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 50 条
  • [41] A new algorithm for fitting semi-parametric variance regression models
    Robledo, Kristy P.
    Marschner, Ian C.
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2313 - 2335
  • [42] Estimation in semi-parametric regression with non-stationary regressors
    Chen, Jia
    Gao, Jiti
    Li, Degui
    [J]. BERNOULLI, 2012, 18 (02) : 678 - 702
  • [43] A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
    Chen, Song Xi
    Van Keilegom, Ingrid
    [J]. BERNOULLI, 2009, 15 (04) : 955 - 976
  • [44] Asymptotic properties of the estimators of the semi-parametric spatial regression model
    Peng Xiaozhi
    Wu Hecheng
    Ma Ling
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (07) : 1663 - 1678
  • [45] Parameter Estimation for Semi-parametric Regression Model with Linear Constraints
    Xia, Yafeng
    Wu, Yongdong
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 355 - 359
  • [46] Semi-parametric Regression under Model Uncertainty: Economic Applications
    Malsiner-Walli, Gertraud
    Hofmarcher, Paul
    Gruen, Bettina
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2019, 81 (05) : 1117 - 1143
  • [47] Semi-parametric Bayes regression with network-valued covariates
    Xin Ma
    Suprateek Kundu
    Jennifer Stevens
    [J]. Machine Learning, 2022, 111 : 3733 - 3767
  • [48] Variable selection in finite mixture of semi-parametric regression models
    Ormoz, Ehsan
    Eskandari, Farzad
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 695 - 711
  • [49] Semi-parametric nonlinear regression and transformation using functional networks
    Castillo, Enrique
    Hadi, Ali S.
    Lacruz, Beatriz
    Pruneda, Rosa E.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2129 - 2157
  • [50] Semi-parametric Bayesian regression for subgroup analysis in clinical trials
    Gamalo-Siebers, Margaret
    Tiwari, Ram
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2019, 29 (06) : 1024 - 1042