Deep convolutional neural networks with ensemble learning and transfer learning for automated detection of gastrointestinal diseases

被引:27
|
作者
Su, Qiaosen [1 ,2 ]
Wang, Fengsheng [1 ,2 ]
Chen, Dong [3 ]
Chen, Gang [3 ]
Li, Chao [4 ]
Wei, Leyi [1 ,2 ]
机构
[1] Shandong Univ, Sch Software, Jinan, Peoples R China
[2] Shandong Univ, Joint SDU NTU Ctr Artificial Intelligence Res C F, Jinan, Peoples R China
[3] Tianjin Univ, Tianjin, Peoples R China
[4] Beidahuang Ind Grp Gen Hosp, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
CLASSIFICATION; IDENTIFICATION; COLONOSCOPY;
D O I
10.1016/j.compbiomed.2022.106054
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gastrointestinal (GI) diseases are serious health threats to human health, and the related detection and treatment of gastrointestinal diseases place a huge burden on medical institutions. Imaging-based methods are one of the most important approaches for automated detection of gastrointestinal diseases. Although deep neural networks have shown impressive performance in a number of imaging tasks, its application to detection of gastrointestinal diseases has not been sufficiently explored. In this study, we propose a novel and practical method to detect gastrointestinal disease from wireless capsule endoscopy (WCE) images by convolutional neural networks. The proposed method utilizes three backbone networks modified and fine-tuned by transfer learning as the feature extractors, and an integrated classifier using ensemble learning is trained to detection of gastrointestinal diseases. The proposed method outperforms existing computational methods on the benchmark dataset. The case study results show that the proposed method captures discriminative information of wireless capsule endoscopy images. This work shows the potential of using deep learning-based computer vision models for effective GI disease screening.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Filter Pruning for Efficient Transfer Learning in Deep Convolutional Neural Networks
    Reinhold, Caique
    Roisenberg, Mauro
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 191 - 202
  • [32] Deep Convolutional Neural Networks with Transfer Learning for Visual Sentiment Analysis
    K. Usha Kingsly Devi
    V. Gomathi
    Neural Processing Letters, 2023, 55 : 5087 - 5120
  • [33] Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification
    Kang, Jaeyong
    Gwak, Jeonghwan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (16) : 22355 - 22377
  • [34] Ensemble of multi-task deep convolutional neural networks using transfer learning for fruit freshness classification
    Jaeyong Kang
    Jeonghwan Gwak
    Multimedia Tools and Applications, 2022, 81 : 22355 - 22377
  • [35] Spectrographic Seizure Detection Using Deep Learning With Convolutional Neural Networks
    Yan, Peter
    Wang, Fei
    Grinspan, Zachary
    NEUROLOGY, 2018, 90
  • [36] Pulmonary Tuberculosis Detection Using Deep Learning Convolutional Neural Networks
    Norval, Michael
    Wang, Zenghui
    Sun, Yanxia
    ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 47 - 51
  • [37] Deepfake Detection with Deep Learning: Convolutional Neural Networks versus Transformers
    Thing, Vrizlynn L. L.
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 246 - 253
  • [38] Operational state detection in hydrocyclones with convolutional neural networks and transfer learning
    Giglia, K. C.
    Aldrich, C.
    MINERALS ENGINEERING, 2020, 149
  • [39] Breast Cancer Detection Using Transfer Learning in Convolutional Neural Networks
    Guan, Shuyue
    Loew, Murray
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [40] Wearable Seizure Detection using Convolutional Neural Networks with Transfer Learning
    Page, Adam
    Shea, Colin
    Mohsenin, Tinoosh
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1086 - 1089