Exact computation of minimum feedback vertex sets with relational algebra

被引:0
|
作者
Berghammer, Rudolf
Fronk, Alexander
机构
[1] Univ Kiel, Inst Appl Math & Sci Comp, D-24098 Kiel, Germany
[2] Univ Dortmund, D-44221 Dortmund, Germany
关键词
directed graphs; feedback vertex sets; elementary chordless cycles; relational algebra; RELVIEW tool;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A feedback vertex set of a graph is a subset of vertices containing at least one vertex from every cycle of the graph. Given a directed graph by its adjacency relation, we develop a relational algorithm for computing a feedback vertex set of minimum size. In combination with a BDD-implementation of relations, it allows to exactly solve this NP-hard problem for medium-sized graphs.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 50 条
  • [41] Enumerating Minimal Subset Feedback Vertex Sets
    Fomin, Fedor V.
    Heggernes, Pinar
    Kratsch, Dieter
    Papadopoulos, Charis
    Villanger, Yngve
    [J]. ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 399 - +
  • [42] MINIMUM WEIGHT FEEDBACK VERTEX SETS IN CIRCLE n-GON GRAPHS AND CIRCLE TRAPEZOID GRAPHS
    Gavril, Fanica
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 323 - 336
  • [43] Small feedback vertex sets inplanar digraphs
    Esperet, Louis
    Lemoine, Laetitia
    Maffray, Frederic
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [44] Subset feedback vertex sets in chordal graphs
    Golovach, Petr A.
    Heggernes, Pinar
    Kratsch, Dieter
    Saei, Reza
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2014, 26 (26) : 7 - 15
  • [45] ON MINIMAL FEEDBACK VERTEX SETS OF A DIGRAPH.
    Harary, Frank
    [J]. 1975, CAS-22 (10): : 839 - 840
  • [46] Two Hardness Results on Feedback Vertex Sets
    Jiang, Wei
    Liu, Tian
    Ren, Tienan
    Xu, Ke
    [J]. FRONTIERS IN ALGORITHMICS AND ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, (FAW-AAIM 2011), 2011, 6681 : 233 - 243
  • [47] Enumerating Minimal Subset Feedback Vertex Sets
    Fedor V. Fomin
    Pinar Heggernes
    Dieter Kratsch
    Charis Papadopoulos
    Yngve Villanger
    [J]. Algorithmica, 2014, 69 : 216 - 231
  • [48] Feedback vertex sets on restricted bipartite graphs
    Jiang, Wei
    Liu, Tian
    Wang, Chaoyi
    Xu, Ke
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 507 : 41 - 51
  • [49] Evaluating sets of search points using relational algebra
    Kehden, Britta
    [J]. RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, PROCEEDINGS, 2006, 4136 : 266 - 280
  • [50] COMMENT ON MINIMUM FEEDBACK ARC SETS
    LAWLER, EL
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1964, CT11 (02): : 296 - &