Operator weak amenability of the Fourier algebra

被引:31
|
作者
Spronk, N [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Fourier algebra; operator space; weakly amenable Banach algebra;
D O I
10.1090/S0002-9939-02-06680-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any locally compact group G, the Fourier algebra A(G) is operator weakly amenable.
引用
收藏
页码:3609 / 3617
页数:9
相关论文
共 50 条
  • [21] Operator amenability of Fourier-Stieltjes algebras
    Runde, V
    Spronk, N
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 136 : 675 - 686
  • [22] On operator amenability of Fourier-Stieltjes algebras
    Spronk, Nico
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 158
  • [23] Weak Amenability of Fourier Algebras on Compact groups
    Forrest, Brian E.
    Samei, Ebrahim
    Spronk, Nico
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) : 1379 - 1393
  • [24] Weak module amenability for the second dual of a Banach algebra
    Soltanmoradi, M. Shabani
    Bagha, D. Ebrahimi
    Rahpeyma, O. Pourbahri
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2021, 25 (02): : 297 - 306
  • [25] The operator biprojectivity of the Fourier algebra
    Wood, PJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05): : 1100 - 1120
  • [26] Operator amenability of Fourier-Stieltjes algebras, II
    Runde, Volker
    Spronk, Nico
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 194 - 202
  • [27] Amenability and semisimplicity for second duals of quotients of the Fourier algebra A(G)
    Granirer, EE
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1997, 63 : 289 - 296
  • [28] Problems concerning n-weak amenability of a Banach algebra
    Medghalchi, A
    Yazdanpanah, T
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (04) : 863 - 876
  • [29] Problems Concerning n-Weak Amenability of a Banach Algebra
    Alireza Medghalchi
    Taher Yazdanpanah
    Czechoslovak Mathematical Journal, 2005, 55 : 863 - 876
  • [30] FOURIER OPTICS DESCRIBED BY OPERATOR ALGEBRA
    NAZARATHY, M
    SHAMIR, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1980, 70 (02) : 150 - 159