On the integrability of 2D Hamiltonian systems with variable Gaussian curvature

被引:11
|
作者
Elmandouh, A. A. [1 ,2 ]
机构
[1] King Faisal Univ, Dept Math & Stat, Fac Sci, POB 400, Al Ahsaa 31982, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
Liouville integrability; Differential Galois theory; Systems in polar coordinates; ATWOOD MACHINE; NONEXISTENCE; INTEGRALS; MOTION;
D O I
10.1007/s11071-018-4237-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we consider the integrability of a general 2D motion of a particle on a surface with variable Gaussian curvature under the influence of conservative potential forces. Although this system has a kinetic energy relying on the coordinates, it remains homogeneous. The homogeneity of the system generally enables us to find a particular solution that can be utilized to derive the necessary conditions for the integrability by studying the properties of the differential Galois group of the normal variational equations along this particular solution. We present a new theory that can be applied to determine the necessary conditions for the integrability of Hamiltonian systems having a variable Gaussian curvature.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [1] On the integrability of 2D Hamiltonian systems with variable Gaussian curvature
    A. A. Elmandouh
    Nonlinear Dynamics, 2018, 93 : 933 - 943
  • [2] Comment on ,,On the integrability of 2D Hamiltonian systems with variable Gaussian curvature” by A. A. Elmandouh
    Wojciech Szumiński
    Andrzej J. Maciejewski
    Nonlinear Dynamics, 2021, 104 : 1443 - 1450
  • [3] Comment on "On the integrability of 2D Hamiltonian systems with variable Gaussian curvature" by A. A. Elmandouh
    Szuminski, Wojciech
    Maciejewski, Andrzej J.
    NONLINEAR DYNAMICS, 2021, 104 (02) : 1443 - 1450
  • [4] Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces
    Maciejewski, Andrzej J.
    Szuminski, Wojciech
    Przybylska, Maria
    PHYSICS LETTERS A, 2017, 381 (07) : 725 - 732
  • [5] On the integrability of hybrid Hamiltonian systems
    Lopez-Gordon, Asier
    Colombo, Leonardo J.
    IFAC PAPERSONLINE, 2024, 58 (06): : 83 - 88
  • [6] INTEGRABILITY OF HAMILTONIAN-SYSTEMS
    KOZLOV, VV
    KOLESNIKOV, NN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1979, (06): : 88 - 91
  • [7] INTEGRABILITY OF HAMILTONIAN SYSTEMS.
    Kozlov, V.V.
    Kolesnikov, N.N.
    Moscow University mechanics bulletin, 1979, 34 (5-6) : 48 - 51
  • [8] A note on the integrability of Hamiltonian systems
    Kasperczuk, SP
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (03) : 199 - 204
  • [9] A Note on the Integrability of Hamiltonian Systems
    Stanisław P. Kasperczuk
    Letters in Mathematical Physics, 2002, 61 : 199 - 204
  • [10] An analytical scheme on complete integrability of 2D biophysical excitable systems
    Mondal, Argha
    Mistri, Kshitish Ch
    Aziz-Alaoui, M. A.
    Upadhyay, Ranjit Kumar
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 573