Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces

被引:8
|
作者
Maciejewski, Andrzej J. [1 ]
Szuminski, Wojciech [2 ]
Przybylska, Maria [2 ]
机构
[1] Univ Zielona Gora, Janusz Gil Inst Astron, Licealna 9, PL-65407 Zielona Gora, Poland
[2] Univ Zielona Gora, Inst Phys, Licealna 9, PL-65407 Zielona Gora, Poland
关键词
Integrability obstructions; Liouville integrability; Morales-Ramis theory; Differential Galois theory; Constant curvature spaces; SPHERE;
D O I
10.1016/j.physleta.2016.12.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the necessary conditions for the integrability of a certain family of Hamiltonian systems defined in the constant curvature two-dimensional spaces. Proposed form of potential can be considered as a counterpart of a homogeneous potential in flat spaces. Thanks to this property Hamilton equations admit, in a general case, a particular solution. Using this solution we derive necessary integrability conditions investigating differential Galois group of variational equations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:725 / 732
页数:8
相关论文
共 50 条